drug binding affinity in terms of the inhibitory constant (K_i) was calculated every time the drug molecule was moved. After repeating this procedure for all of the drugs for each protein, the 20 drugs with the lowest K_i values were considered high-affinity drug candidates. Further details of the molecular dynamics simulation and docking protocols are available elsewhere.3

Results. We predicted 20 multitarget drugs that showed high affinity across 2 or more proteins (FIGURE). Four are drugs approved by the US Food and Drug Administration for treatment of diseases other than malaria: KN62 (targeting 3 proteins), protoporphyrin IX, phthalylsulfathiazole, and sulfaphenazole (targeting 2 proteins each). The other 16 are experimental, each targeting up to 6 proteins. The best drugs in terms of multitarget functionality were STI-16 (K_i values were considered high-affinity drug candidates. Further details of the molecular dynamics simulation and docking protocols are available elsewhere.3

Conclusions. Promising vaccines targeting multiple *Plasmodium* proteins have been evaluated.9,10 In a similar fashion, we propose designing new antimalarial drugs that simultaneously target multiple *Plasmodium* proteins. Our computational drug screening protocol provides evidence for 20 approved or experimental drugs that bind strongly to 13 *Plasmodium* proteins. We recommend that these drug candidates be experimentally tested for inhibition of *Plasmodium* growth and used as a starting point for further design of a high-efficacy multitarget antimalarial drug.

Ekachai Jenwitheesuk, DVM, PhD
Ram Samudrala, PhD
Department of Microbiology
University of Washington School of Medicine
Seattle

Author Contributions: Dr Jenwitheesuk had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design; analysis and interpretation of data: Jenwitheesuk, Samudrala.

Drafting of the manuscript: Jenwitheesuk.

Critical revision of the manuscript for important intellectual content; obtained funding; study supervision: Samudrala.

Funding/Support: This work was supported in part by a NSF CAREER award, NSF grant DBI 0217241, NIH grant GM068152, a Searle Scholar Award, and the Puget Sound Partners in Global Health.

Role of the Sponsor: The grant sponsors had no role in the design and conduct of the study; the collection, analysis, and interpretation of the data; or the preparation, review, or approval of the manuscript.