Androgen Deprivation Therapy for Prostate Cancer

Nima Sharifi, MD
James L. Gulley, MD, PhD
William L. Dahut, MD

Androgen deprivation therapy (ADT; herein defined as medical or surgical castration) is the cornerstone treatment of advanced prostate cancer. In 1941, Huggins and Hodges first noted the beneficial effects of castration and injection of estrogens in patients with metastatic prostate cancer. The biological basis of the effect of ADT, the almost ubiquitous expression of the androgen receptor in prostate cancer, and growth dependence on the androgen receptor later became clear.

Today, in addition to its well-established role in treating patients with metastatic disease, ADT is sometimes used to treat patients with increasing prostate-specific antigen (PSA) levels after local treatment, even without radiographic or other evidence of metastatic disease. Androgen deprivation therapy is also used as adjunct therapy for men undergoing radiation therapy for high-risk localized disease (TABLE 1). Despite frequently dramatic and sustained responses of many patients to ADT, treatment exposes patients to a host of important adverse effects (TABLE 2). We sought to systematically review existing evidence regarding the benefits and risks of ADT in contemporary management of local and metastatic prostate cancer.

Context
Prostate cancer is the most common nonskin cancer and second most common cause of cancer mortality in US men. Androgen deprivation therapy (ADT), specifically surgical or medical castration, is the first line of treatment against advanced prostate cancer and is also used as an adjuvant to local treatment of high-risk disease.

Objective
To review systematically the evidence on the risks and benefits of ADT for prostate cancer as well as clinical management of its adverse effects.

Evidence Acquisition
We performed MEDLINE searches of English-language literature (1966 to March 2005) using the terms androgen deprivation therapy, hormone treatment, and prostate cancer. We reviewed bibliographies of literature to extract other relevant articles. Studies were selected based on clinical pertinence, with an emphasis on controlled study design.

Evidence Synthesis
Androgen deprivation therapy is effective for palliation in many patients with advanced prostate cancer and improves outcomes for high-risk patients treated with radiation therapy for localized disease. Although patients with increasing prostate-specific antigen levels after local treatment without metastatic disease frequently undergo ADT, the benefits of this strategy are not clear. Adverse effects of ADT include decreased libido, impotence, hot flashes, osteopenia with increased fracture risk, metabolic alterations, and changes in cognition and mood.

Conclusions
Androgen deprivation therapy has clear roles in the management of advanced prostate cancer and high-risk localized disease. The benefits of ADT in other settings need to be weighed carefully against substantial risks and adverse effects on quality of life.

JAMA. 2005;294:238-244
www.jama.com

EVIDENCE ACQUISITION
We performed MEDLINE searches of the English-language literature (1966 to March 2005) using the terms androgen deprivation therapy, hormone treatment, and prostate cancer. Relevant bibliographies of literature were manually reviewed for additional material. In evaluating the benefits of ADT, phase 3 randomized trial data were emphasized. On review of clinical trials, clinical end points of focus, in decreasing order of importance, were survival benefit, radiographic progression-free survival, and rising PSA level. Further information was obtained in oral and abstract form at the 2005 Prostate Cancer Symposium meeting, Orlando, Fla, and the 2005 American Society of Clinical Oncology meeting, Orlando, Fla. Published guidelines from the National Comprehensive Cancer Network (NCCN) and the American Society of Clinical Oncology were also reviewed.

Author Affiliations: Medical Oncology Clinical Research Unit (Drs Sharifi, Gulley, and Dahut) and Laboratory of Tumor Immunology and Biology (Dr Gulley), National Cancer Institute, Bethesda, Md; Cytokine Molecular Mechanisms Section, Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, Md (Dr Sharifi).

Corresponding Author: James L. Gulley, MD, PhD, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, 10 Center Dr, 8809 MSC 1750, Bethesda, MD 20892 (gulley@email.nih.gov).

Clinical Review Section Editor: Michael S. Lauer, MD. We encourage authors to submit papers for consideration as a “Clinical Review.” Please contact Michael S. Lauer, MD, at lauerm@ccf.org.
EVIDENCE SYNTHESIS

Medical vs Surgical Castration for Androgen Ablation

Orchiectomy is a relatively simple procedure with minor surgical risks.12 Despite its low physical morbidity, orchiectomy has fallen out of favor given its psychological impact and viable medical alternatives for androgen deprivation.13

Medical castration with gonadotropin-releasing hormone agonists (GnRH-A) in prostate cancer patients was first reported in 1982.14 Leuprolide and goserelin are 2 commonly used GnRH-A and are administered in the form of 1-, 3-, 4-, and 6-month depot injections, as well as 12-month subcutaneous implants. Endogenous GnRH is physiologically released in a pulsatile manner from the hypothalamus and is directed to the anterior lobe of the pituitary (Figure). In response, luteinizing hormone is released from the pituitary, which in turn stimulates testosterone production in the testes. Long-term treatment with GnRH-A supplants the effect of physiologically pulsatile endogenous GnRH and is thought to down-regulate its receptors in the pituitary gland, leading to castration levels of testosterone within 3 weeks.15

It is well recognized that GnRH-A initially cause a surge in testosterone and can cause a “flare” reaction in patients with metastatic prostate cancer. This is due to an acute stimulation of prostate cancer growth by elevated levels of testosterone. A placebo-controlled trial has shown that androgen receptor antagonists lower the amount of bone pain with initiation of GnRH-A therapy for patients with metastatic prostate cancer.16 To prevent flare reactions, some recommend that patients with metastatic disease start with an androgen antagonist prior to initiation of treatment with a GnRH-A and continue for 2 to 4 weeks to block the effect of the testosterone surge on peripheral androgen receptors.17

Gonadotropin-releasing hormone agonists may alternatively be used for medical castration and do not cause a testosterone surge, but they have a 3.7% incidence of anaphylaxis.18 Gonadotropin-releasing hormone antagonists are indicated for palliative treatment of men with advanced symptomatic prostate cancer, in whom GnRH-A therapy alone is not appropriate because of an initial increase in testosterone, who refuse surgical castration, and who have one or more of the following: (1) risk of neurological compromise due to metastases; (2) ureteral or bladder outlet obstruction due to local encroachment or metastatic disease; or (3) severe bone pain from skeletal metastases persisting with narcotic analgesia use.18

In principle, it is important to achieve serum testosterone concentrations as

Table 1. Benefit of ADT for Stages of Prostate Cancer

<table>
<thead>
<tr>
<th>Prostate Cancer Stage</th>
<th>Source</th>
<th>Outcome</th>
<th>Control Arm, % (95% CI)</th>
<th>Early-ADT Arm, % (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>MRC,* 1997</td>
<td>Decrease in rate of cord compression</td>
<td>4.9</td>
<td>1.9</td>
<td><.025*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decrease in rate of ureteral obstruction</td>
<td>11.8</td>
<td>7.0</td>
<td><.025*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decrease in rate of pathologic fracture</td>
<td>4.5</td>
<td>2.3</td>
<td>NS</td>
</tr>
</tbody>
</table>

Patients with local treatment for high-risk or locally advanced disease

<table>
<thead>
<tr>
<th>Outcome</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolla et al,7 1997 and Bolla et al,6 2002</td>
<td>Increase in 5-y survival</td>
</tr>
<tr>
<td>Pietroch,2003</td>
<td>Increase in 10-y survival</td>
</tr>
<tr>
<td>D’Amico et al,5 2004†</td>
<td>Increase in 5-y survival</td>
</tr>
<tr>
<td>Messing et al,6 1998, and Messing et al,5 2003</td>
<td>Increase in 10-y survival</td>
</tr>
</tbody>
</table>

Abbreviations: ADT, androgen deprivation therapy; CI, confidence interval; MRC, Medical Research Council Prostate Cancer Working Party Investigators Group; NS, nonsignificant (value not reported in original study).

*Two-sided P values.
†This trial also included patients not at high risk.

Table 2. Selected Adverse Effects of ADT and Evidence for Treatment

<table>
<thead>
<tr>
<th>Adverse Effect</th>
<th>Source</th>
<th>Treatment for Adverse Effect</th>
<th>Outcome</th>
<th>Control Arm</th>
<th>Intervention Arm</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot flashes</td>
<td>Loprinzi et al,4 1994</td>
<td>Megestrol acetate*</td>
<td>Reduction in hot flashes</td>
<td>20%</td>
<td>74%</td>
<td><.001</td>
</tr>
<tr>
<td>Osteoporosis and increased risk of fracture</td>
<td>Smith et al,10 2001</td>
<td>Pamidronate</td>
<td>BMD change</td>
<td>Decrease of 1.8%-8.5%</td>
<td>No change</td>
<td><.02</td>
</tr>
<tr>
<td></td>
<td>Smith et al,10 2003</td>
<td>Zoledronic acid</td>
<td>BMD change</td>
<td>Decrease of 2.2%</td>
<td>Increase of 5.6%</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: ADT, androgen deprivation therapy; BMD, bone mineral density.
*May cause disease progression.

©2005 American Medical Association. All rights reserved.

(Reprinted with Corrections) JAMA, July 13, 2005—Vol 294, No. 2
Testosterone released from the testes is converted to dihydrotestosterone, a more potent activator of the androgen receptor than testosterone. Finasteride inhibits 5α-reductase, the enzyme responsible for this conversion. Finasteride has no defined role in the standard care of patients with prostate cancer but may have a role in prevention.21

Benefits of ADT

Advanced Prostate Cancer. The first large randomized controlled trial to address the efficacy of orchiectomy in advanced prostate cancer was the Veterans Administration Co-operative Urological Research Group (VACURG) I study, which also included an arm with no treatment.22,23 After 9 years, all men with metastatic disease in the control arm were treated with androgen ablation. Therefore, this trial may be best described as a comparison of early vs late ADT.24 Survival curves for men in these arms were essentially equivalent, suggesting that there is no survival advantage to early treatment with ADT. This trial did not address any palliative end points.

The Medical Research Council conducted a randomized trial of early vs late ADT in patients with locally advanced disease or asymptomatic metastatic disease. Two hundred fifty-seven (71%) of 465 patients in the deferred-treatment arm died of prostate cancer vs 203 (62%) of 469 patients in the immediate-treatment arm (P = .001). Fifty-five men (11.8%) in the deferred arm and 37 (7.9%) in the immediate-treatment arm had extraskeletal metastases (P < .05). The number of patients with pathological fracture were 21 (4.5%) in the deferred-treatment arm vs 11 (2.3%) in the immediate-treatment arm (not statistically significant). Twenty-three patients (4.9%) in the deferred-treatment arm vs 9 (1.9%) in the immediate-treatment arm had spinal cord compression (P < .025). Fifty-five (11.8%) and 33 (7.0%) patients had ureteral obstruction, respectively (P < .025). Bone pain and other quality-of-life measures were not reported. An important

![Figure. Hormonal Interventions and Endocrine Axis in Prostate Cancer](https://example.com/figure.png)

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Drugs</th>
<th>Site of Action</th>
<th>Mechanism of Action</th>
<th>Comments/Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormone (GnRH) Agonists</td>
<td>Goserelin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal Ablating Drugs</td>
<td>Ketoconazole</td>
<td>Adrenal Gland</td>
<td>Decreases Androgen Synthesis From Steroid Precursors Through Inhibition of Cytochrome P450 Enzymes</td>
<td>Administration Requires Steroid Supplementation to Prevent Adrenal Insufficiency</td>
</tr>
<tr>
<td>Androgen Receptor Antagonists</td>
<td>Flutamide</td>
<td>Prostate Gland</td>
<td>Inhibits Androgen Receptor Ligand-Binding Domain Through Competitive Binding</td>
<td>Gynecomastia, Increased Liver Transaminases, and Mastodynia</td>
</tr>
<tr>
<td></td>
<td>Bicalutamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nilutamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5α-Reductase Inhibitors</td>
<td>Finasteride</td>
<td>Prostate Gland</td>
<td>Decreases Conversion of Testosterone to DHT Through Inhibition of 5α-Reductase</td>
<td>No Defined Role in Standard Care of Prostate Cancer</td>
</tr>
</tbody>
</table>

DHT indicates dihydrotestosterone and LH, luteinizing hormone. Asterisk indicates no longer available for new patients in the United States. Illustration based on original concept by Lydia Kibiuk.
note is that this study has been criticized because many of these patients died before starting ADT.28,29

The efficacy of medical vs surgical castration for advanced prostate cancer has been addressed. Ten randomized trials of GnRH-A compared with orchiectomy have been conducted and were systematically evaluated in a previously published meta-analysis.30 All of these trials found equivalence between GnRH-A and orchiectomy in terms of survival, progression-related outcomes, and time to treatment failure.

Advanced prostate cancer almost always becomes androgen independent after castration. The duration of response after ADT in the metastatic setting is typically 14 to 20 months.26,27 Secondary hormone treatment with an androgen receptor antagonist or ketoconazole is often used when prostate cancer progresses after ADT.28

In summary, in the setting of advanced prostate cancer, ADT—whether surgical or medical—provides important quality-of-life benefits, including reductions of bone pain,29 pathological fracture, spinal cord compression, and ureteral obstruction. However, it is not clear whether there is an improvement in long-term survival.

ADT Adjuvant to Radiation Therapy or Prostatectomy. Several phase 3 randomized trials have shown a benefit in overall survival when comparing radiation therapy alone to radiation therapy plus ADT for patients with locally advanced (ie, extracapsular or node-positive) disease. The European Organisation for Research and Treatment of Cancer conducted a phase 3 trial in 412 patients with locally advanced disease, randomizing the patients to GnRH-A plus radiation therapy vs radiation therapy alone. In the combination arm, ADT was started on the first day of radiation and continued for 3 years.34 Overall survival at 5 years was 78% for combined treatment and 62% (P<.001) for radiation therapy alone. Among surviving patients, 74% and 40% were free of disease at 5 years in the combined treatment and radiation-only groups, respectively (P<.001).

In the Radiation Therapy Oncology Group Trial 85-31, a GnRH-A was started in the last week of radiation therapy and continued indefinitely for patients with evidence of extracapsular disease or regional lymph node involvement.30,31 A recent analysis of this study found an improvement in overall survival favoring the ADT arm (estimated 10-year absolute survival of 53% vs 38%; P<.004), and a retrospective subset analysis of this trial suggested a significant improvement in survival favoring the ADT arm among patients with involved regional nodes.32 D’Amico et al8 conducted a randomized controlled trial of 3-dimensional conformal radiation therapy (3D-CRT) with or without 6 months of GnRH-A therapy in 206 patients with prostate cancer with a Gleason score of at least 7, evidence of extraprostatic disease, or a PSA level of at least 10 ng/mL. The estimated 5-year survival of the combined therapy group was 88% vs 78% in the 3D-CRT-only group (P=.04). Survival free of salvage ADT was 82% and 57% in the combined-therapy and 3D-CRT groups, respectively (P=.002). It is also important to note that a critique of adjuvant ADT studies for high-risk (ie, stage T2c, PSA >20 ng/mL, or Gleason score ≥8) or locally advanced disease is that these trials have no ADT-only arm.4 The NCCN recommends hormone therapy plus radiation therapy for patients with high-risk disease.17

Messing et al27 conducted a prospective, randomized trial examining the effect of early ADT on outcomes for men with pelvic lymph node involvement who had undergone radical prostatectomy. Thirteen (28%) of 47 men in the early-ADT arm had died after a median follow-up of 10 years vs 26 (51%) of 51 men in the observation arm (P=.025).

Biochemical Failure. Biochemical failure is defined as a progressively increasing PSA level without radiographic metastatic disease after treatment for localized disease. A retrospective study of men with a rising PSA level after prostatectomy with no hormone treatment revealed a median actuarial time to metastasis of 8 years after PSA elevation.31 Only 133 (34%) of 304 men in that study developed clinically apparent metastases. However, only 53% of the subset of men with a Gleason score of 8 to 10 and biochemical recurrence within 2 years of prostatectomy were metastasis-free at 3 years.

Although many men with biochemical failure are treated with ADT, there are no data currently available from prospective trials to address a possible benefit in terms of disease progression or survival.34 Given that there is no definitive survival advantage to early ADT in advanced prostate cancer, there may be no compelling reason to treat most men with biochemical failure. However, given the survival advantage of adjuvant ADT for men with locally advanced or high-grade disease and earlier time to metastasis in men with high-grade tumors or aggressive features, there may be a potential benefit in treating this subset of men who have biochemical failure. This matter is subject to debate, and ascertainment of the benefit of ADT for biochemical failure after prostatectomy or radiation therapy awaits data from prospective studies.

Adverse Effects of ADT

Hot Flashes. Hot flashes can significantly affect quality of life for men undergoing ADT. Up to 80% of patients undergoing treatment with GnRH-A report hot flashes and up to 27% report this as the most troublesome adverse effect.35 Most intervention studies for hot flashes have evaluated treatments in breast cancer patients taking tamox-
ANDROGEN DEPRIVATION THERAPY FOR PROSTATE CANCER

if en or women who are postmeno-

A randomized, double-blind, pla-

ceto-controlled trial of megestrol ac-
etate for prevention of hot flashes in
women with a history of breast cancer
and men undergoing ADT for prostate
cancer showed a reduction in hot
flashes in 74% of the megestrol group
and 20% of the placebo group by in-
tention to treat (P<.001). The effi-
cacy of megestrol was similar in men
and women. However, PSA levels have
been reported to increase in men who
commence megestrol while receiving
ADT and decline with discontinua-
tion of megestrol. Although antide-
pressants are sometimes used and have
been evaluated in small pilot trials, we
could find no large-scale placebo-
controlled trials demonstrating effi-
cacy in men undergoing ADT.

Skeletal Complications. Several pro-
spective trials have established that bone
mineral density (BMD) is significantly
decreased in men receiving ADT com-
pared with a control group. Notably, these
losses surpass bone loss in women who
are in early menopause. A recent study of
more than 50,000 men from the Sur-
veillance, Epidemiology and End Re-
sults program (SEER) and Medicare da-
tabases compared the risk of fracture in
men with a diagnosis of prostate cancer
who were treated with ADT vs those not
receiving ADT. Men who were treated
with ADT had an increased risk of frac-
ture starting 1 year after diagnosis. The
risk of fracture increased with an in-
crease in the number of doses of GnRH-A
received. The number needed to harm
for an occurrence of fracture 1 to 5 years
after diagnosis was 28 for men treated
with GnRH-A and 16 for men treated
with orchiectomy.

Therapeutic intervention to prevent
skeletal complications for men treated
with ADT has been examined in both
nonmetastatic and metastatic clinical set-
tings. In a randomized trial of 47 men
with nonmetastatic prostate cancer,
GnRH-A alone was compared with
GnRH-A plus 60 mg of pamidronate
given every 12 weeks. Men in the GnRH-
A-only arm had a mean decrease in lum-
ter, total hip, and trabecular lumbar spine BMD of 3.3% (P<.001),
2.1% (P=.003), 1.8% (P=.005), and
8.5% (P=.02), respectively, after 48
weeks. Mean BMD did not change signi-
ficantly in the GnRH-A plus pamidro-
name group. In a multicenter, double-
blind study, 106 men with nonmetastatic
prostate cancer who were starting ADT
were randomized to receive placebo vs
4 mg of zoledronic acid every 3 months
for 1 year. Mean lumbar spine BMD de-
creased in the placebo group by 2.2%,
whereas BMD increased by 5.6% in the
zoledronic acid group (P<.001). A ran-
domized, placebo-controlled trial of zole-
dronic acid in patients with androgen-
indep endent metastatic prostate cancer
showed a significant decrease in skeletal-
related events in the zoledronic acid arm
(33% vs 44%; P=.02).

Men receiving or starting ADT should
be evaluated for risk of osteoporosis.
These risks include family history of
osteoporosis, low body weight, prior frac-
tures, excessive alcohol use, smoking,
glucocorticoid use, low vitamin D lev-
els, and other medical comorbidities. All
men should start calcium and vitamin D
supplementation. Baseline BMD
should be determined. Routine use of
bisphosphonates in patients undergo-
ing ADT is not recommended unless
there is documented osteoporosis or
androgen-independent prostate cancer
with skeletal metastasis. Men who smoke
or have excessive alcohol consumption
should be urged to abstain.

Sexual Function. Testosterone plays
an important role in normal male sexual
function. Decreasing serum testos-
terone can have a significant negative im-
 pact on quality of life for patients treated
with ADT. Although erectile dysfunc-
tion is not uncommon after radical
prostatectomy, men who undergo ADT
have a further decline in ability for
sexual intercourse and a decrease in
sexual desire compared with men who
are not treated with ADT.

The Prostate Cancer Outcomes Study
of the SEER program examined quality-
of-life outcomes for 431 men with all
stages of prostate cancer who were
 treated with ADT and no other treat-
ment within 1 year of initial diagnosis.
The impact on sexual function of treat-
ment with a GnRH-A or an orchiec-
tomy was noted. Men reporting no
sexual interest increased from 27.6% to
63.6% after orchiectomy and 31.7% to
58.0% after GnRH-A. Men who
achieved no erections increased from
35.0% to 78.6% after orchiectomy and
37.9% to 73.3% after GnRH-A. Men
with no sexual activity increased from
47.9% to 82.8% after orchiectomy and
45.0% to 80.2% after GnRH-A. Surprising-
ly, despite the cosmetic effects and
psychological impact of orchiectomy,
GnRH-A and orchiectomy had similar
effects on sexual function. Although
phosphodiesterase type 5 inhibitors are
an option, there has been no study spe-
cifically evaluating these drugs in men
with prostate cancer before ADT and 6 to 12 months
after ADT. These studies have noted
increases in body mass index of 1.6% to
2.4%. Among 35 men in 1 study, fat
body mass increased 10% to 20% in 7
men (20%), 20% to 50% in 8 men
(22.8%), and more than 50% in 5 men
(14.3%). Lean body mass was found to
decrease between 2% and 5% in 8
men (22.8%) and greater than 5% in 7
men (20%). Both studies that exam-
ined total cholesterol and triglycer-
ides found a significant increase in both
of these measures. One of these stud-
ies noted increases in high-density li-
oproteins, low-density lipoproteins,
total cholesterol, and triglycerides of
11.3% (P<.001), 7.3% (P=.05), 9.0%
(P<.001), and 26.5% (P=.01). The
only study that examined changes in
fasting glucose levels noted a significant increase after ADT.33 A retrospective analysis of men receiving ADT suggests that such metabolic changes lead to increases in HbA1c.32

A caveat for all of these studies is that they are comparisons of the same patients before and after ADT and, therefore, lack a control group. Nonetheless, these data are consistent with the physiologic changes that have been recognized in other forms of testosterone deficiency. The combination of increasing fat mass, increasing cholesterol, and glucose intolerance may be related to what is recognized as the metabolic syndrome. While metastatic prostate cancer provides a compelling reason for ADT, the impact of negatively modifying cardiovascular risk factors with ADT in other clinical settings for prostate cancer patients, who have a median age of 70 years, should, we believe, be measured carefully, especially in men with biochemical recurrence in the absence of data on survival.

Cognitive and Mood Changes. There is conflicting literature on the issue of cognitive function changes in men undergoing ADT. A study that randomized 82 men to GnRH-A vs close clinical monitoring suggests that there may be worsening on some tests of attention and memory.23 However, a second study does not suggest any cognitive impairment in men being treated with ADT but, rather, noted an improvement in object recall.24 A more recent prospective study associates declines in verbal fluency, visual memory, and visual recognition with declines in estradiol induced by ADT.53

A quality-of-life study of 144 men given a choice of immediate or deferred ADT found significantly worse scores for fatigue and psychological distress for the men receiving ADT.26 Men with prostate cancer surveyed at Massachusetts General Hospital were found to have 8 times the national rate of depression. However, this was not associated with ADT.57

Other Changes. Normocytic, normochromic anemia is seen in many patients receiving ADT. Strum et al58 prospectively evaluated patients receiving combined androgen blockade. They found a hemoglobin decrease of at least 10% in 90% of their patients and a hemoglobin decrease of at least 25% in 13% of patients. Anemia may be a contributing factor to fatigue that is associated with ADT.

Gynecomastia occurs in 1% to 16% of men treated with ADT. Treatment options include breast irradiation, surgery, and tamoxifen. Surgical therapies are also an option.29 Other adverse effects of ADT include dry eyes, body hair loss, and vertigo.30

CONTROVERSIES

Combined Androgen Blockade

Despite medical or surgical castration, continued release occurs of a lower level of androgens, mainly from the adrenal glands. A long-standing debate exists on the use of combined androgen blockade, which is treatment with castration along with an androgen receptor antagonist. An earlier study comparing daily injections of a GnRH-A vs GnRH-A plus an androgen antagonist found survival benefit for combined androgen blockade.26 However, a second large, randomized study found no survival benefit for combined androgen blockade when surgical castration was used.27

A meta-analysis of 27 randomized trials found a slight but significant 5-year survival benefit for combined androgen blockade.60 The number of patients needed to treat with combined androgen blockade to prevent 1 death is estimated at 20 to 100.12 It is estimated that the increased costs amount to $1 million per quality-adjusted life-year.12

Intermittent Androgen Blockade

Some have argued that intermittent ADT will delay progression to androgen independence compared with sustained ADT and that a testosterone increase when ADT is not in use decreases adverse effects. Although phase 3 trials are under way, there currently are no data from prospective randomized trials, and the American Society of Clinical Oncology considers intermittent androgen blockade to be experimental.12

Antiandrogen Monotherapy

Nonsteroidal antiandrogen monotherapy has a less severe adverse-effects profile than that of ADT, making it a potential alternative. In a meta-analysis comparing bicalutamide and castration, overall survival with bicalutamide monotherapy was statistically not worse than that with castration.25 The American Society of Clinical Oncology states that monotherapy with a nonsteroidal antiandrogen may be discussed as an alternative to ADT, but steroidal antiandrogens (currently not approved in the United States) should not be offered as monotherapy.12

CONCLUSIONS

Androgen deprivation therapy is the most widely used systemic treatment for prostate cancer. In the metastatic setting, ADT has clear quality-of-life benefits but has not been shown to have survival benefit. Patients receiving local treatment with radiation therapy for high-risk disease have proven survival benefit. However, the role and benefit of ADT in biochemical failure after local therapy is unclear.

Adverse effects of ADT often mimic testosterone deficiency due to other causes. When anticipated prior to or early in ADT, some adverse effects, such as bone loss, can be prevented. Adverse effects, such as hot flashes and sexual effects, can significantly affect quality of life. Metabolic changes also occur, some of which are risk factors for cardiovascular disease. Clearly, further study is required to help physicians carefully weigh the benefits against the morbidity associated with ADT and to optimize the management of adverse effects.

Financial Disclosures: None reported.

REFERENCES

ANDROGEN DEPRIVATION THERAPY FOR PROSTATE CANCER

4. Bolla M, Collette L, Blank L, et al. Long-term re-
sults with immediate androgen suppression and exter-
nal irradiation in patients with locally advanced pros-

5. Pilepich MV. Phase III trial of androgen suppres-
sion adjacent to definitive radiotherapy: long-term re-

6. Messing EM, Manola J, Sarosdy M, Wilding G, Craw-
ford ED, Trump D. Immediate hormonal therapy com-
pared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive pros-

7. Messing EM, Manola J, Sarosdy M, Wilding G, Craw-
ford ED, Trump D. Immediate hormonal therapy com-
pared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive pros-
tate cancer: results at 10 years of EST 3886. Presented at the American Urological Association meeting; April 29-May 2, 1999; Chicago, Ill.

8. Loprinzi CL, Michalak JC, Quella SK, et al. Meges-

9. Smith MR, McLaughlin MD, Thrasher JB. Al-
ternative control of leuprolide with and without flut-

11. Lawton CA, Winter K, Murray K, et al. Updated results of the phase III Radiation Therapy Oncology Group trial (RTOG) trial 85-31 evaluating the potential ben-
efit of androgen suppression following standard radia-

13. Singer FR. Osteoporosis in men with prostate carci-

14. Higano CS. Bone loss and the evolving role of bi-

15. Shahinian VB, Kuo Y-F, Freeman RL, Goodwin JS. Risk of fracture after androgen deprivation for pros-

17. Diamond TH, Higano CS, Smith MR, Guise TA, Singer FR. Osteoporosis in men with prostate carci-

19. Fowler FJ, McNaughton Collins M, Walker Corkery E, Elliott DB, Barry MJ. The impact of androgen de-

20. Potosky AL, Knopf K, Clegg LX, et al. Quality-of-

21. Smith M. Changes in body composition during hor-

22. Smith MR, Finkelstein JS, McGeown FJ, et al. Changes in body composition during androgen de-

24. Smith M. Changes in body composition during hor-

25. Messing EM, Manola J, Sarosdy M, Wilding G, Craw-
ford ED, Trump D. Immediate hormonal therapy com-
pared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive pros-
tate cancer: results at 10 years of EST 3886. Presented at the American Urological Association meeting; April 29-May 2, 1999; Chicago, Ill.

26. Loprinzi CL, Michalak JC, Quella SK, et al. Meges-

27. Smith MR, McLaughlin MD, Shasha D, Tchek-
ouno T, Ackman D, Stellos A, et al. Tumor growth in-

28. Dawson NA, McLeod DG. Dramatic prostate spe-
cific antigen decrease in response to discontinuation of megestrol acetate in advanced prostate cancer: expan-

29. Quella SK, Loprinzi CL, Sloan J, et al. Pilot evalu-
ation of venlafaxine for the treatment of hot flashes in men undergoing androgen ablation therapy for pros-

30. Loprinzi CL, Barton DL, Carpenter LA, et al. Pilot evalu-

31. Higano CS. Bone loss and the evolving role of bi-