Monitoring Sedation Status Over Time in ICU Patients
Reliability and Validity of the Richmond Agitation-Sedation Scale (RASS)

E. Wesley Ely, MD, MPH
Brenda Truman, RN, MSN
Ayumi Shintani, PhD, MSN
Jason W. W. Thomason, MD
Arthur P. Wheeler, MD
Sharon Gordon, PsyD
Joseph Francis, MD, MPH
Theodore Speroff, PhD
Shiva Gautam, PhD
Richard Margolin, MD
Curtis N. Sessler, MD
Robert S. Dittus, MD, MPH
Gordon R. Bernard, MD

Context Goal-directed delivery of sedative and analgesic medications is recommended as standard care in intensive care units (ICUs) because of the impact these medications have on ventilator weaning and ICU length of stay, but few of the available sedation scales have been appropriately tested for reliability and validity.

Objective To test the reliability and validity of the Richmond Agitation-Sedation Scale (RASS).

Design Prospective cohort study.

Setting Adult medical and coronary ICUs of a university-based medical center.

Participants Thirty-eight medical ICU patients enrolled for reliability testing (46% receiving mechanical ventilation) from July 21, 1999, to September 7, 1999, and an independent cohort of 275 patients receiving mechanical ventilation were enrolled for validity testing from February 1, 2000, to May 3, 2001.

Main Outcome Measures Interrater reliability of the RASS, Glasgow Coma Scale (GCS), and Ramsay Scale (RS); validity of the RASS correlated with reference standard ratings, assessments of content of consciousness, GCS scores, doses of sedatives and analgesics, and bispectral electroencephalography.

Results In 290-paired observations by nurses, results of both the RASS and RS demonstrated excellent interrater reliability (weighted κ, 0.91 and 0.94, respectively), which were both superior to the GCS (weighted κ, 0.64; P < .001 for both comparisons). Criterion validity was tested in 411-paired observations in the first 96 patients of the validation cohort, in whom the RASS showed significant differences between levels of consciousness (P < .001 for all) and correctly identified fluctuations within patients over time (P < .001). In addition, 5 methods were used to test the construct validity of the RASS, including correlation with an attention screening examination (r = 0.78, P < .001), GCS scores (r = 0.91, P < .001), quantity of different psychoactive medication dosages 8 hours prior to assessment (eg, lorazepam: r = −0.31, P < .001), successful extubation (P = .07), and bispectral electroencephalography (r = 0.63, P < .001). Face validity was demonstrated via a survey of 26 critical care nurses, which the results showed that 92% agreed or strongly agreed with the RASS scoring scheme, and 81% agreed or strongly agreed that the instrument provided a consensus for goal-directed delivery of medications.

Conclusions The RASS demonstrated excellent interrater reliability and criterion, construct, and face validity. This is the first sedation scale to be validated for its ability to detect changes in sedation status over consecutive days of ICU care, against constructs of level of consciousness and delirium, and correlated with the administered dose of sedative and analgesic medications.

©2003 American Medical Association. All rights reserved.

Author Affiliations are listed at the end of this article. Corresponding Author and Reprints: E. Wesley Ely, MD, MPH, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Center for Health Services Research of Vanderbilt University, Tennessee Valley Veteran’s Affairs Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Nashville, TN 37232 (e-mail: wes.ely@vanderbilt.edu).

Caring for the Critically Ill Patient Section Editor: Deborah J. Cook, MD, Consulting Editor, JAMA.

Advisory Board: David Bihari, MD; Christian Brun-Buisson, MD; Timothy Evans, MD; John Heffner, MD; Norman Paradis, MD; Adrienne Randolph, MD.
though the Ramsay Scale (RS)26 was not originally intended for use as a clinical monitoring tool, it has been used for decades in both clinical practice and research. Still, most patients are not monitored with any scale to guide delivery of sedative medications. Objective, goal-directed sedation therapy is now the recommended standard to avoid oversedation and to promote earlier extubation.3,8,14,17-19 As pointed out by others,1,20-22 very few of the available sedation scales have been appropriately tested for reliability and validity. Even among available instruments that have been tested for reliability and validity,23-26 none discretely separates verbal from physical stimulation (ie, the potency of the stimulus) in generating scores at pivotal levels of sedation. Two recent systematic reviews concluded that goal-directed sedative and analgesic administration would be enhanced if such instruments were shown to detect variations in level of consciousness over time and according to delivery of psychoactive drugs.1,28 Other investigators observed cardiac surgery patients over time, yet the duration of monitoring was only 6 hours, the sample size was small (only 14 patients followed up to extubation), and correlations with drug doses were not published.27

The Richmond Agitation-Sedation Scale (RASS)28,29 was developed by a multidisciplinary team at Virginia Commonwealth University in Richmond. It is a 10-point scale that can be rated briefly using 3 clearly defined steps and that has discrete criteria for levels of sedation and agitation. A unique feature of the RASS is that it uses the duration of eye contact following verbal stimulation as the principal means of titrating sedation. Hence, this scale’s validation could be linked to both arousal and content of thought—the 2 components of consciousness.30 We determined that the duration of eye contact could be easily measured with minimal training, allowing reproducibility and increased acceptability of the instrument by bedside physicians, nurses, and researchers alike. The RASS has been demonstrated to have excellent interrater reliability in a broad range of adult medical and surgical ICU patients and to have excellent validity when compared with a visual analogue scale and selected sedation scales.29

The current investigation was designed to extend the reliability and validity testing of the RASS in novel ways to include assessment of sedation over time, correlation of the RASS with independent neuropsychiatric experts’ measures of level of consciousness and formally measured content of consciousness (ie, inattention and delirium), doses of sedative and analgesic medications, and objective measurement of brain function using bispectral array electroencephalography.

METHODS

This investigation was conducted in the adult medical and coronary ICUs at Vanderbilt University Medical Center, a 641-bed tertiary-care, academic medical center. The institutional review board approved the study, and written informed consent was obtained from the patients or proxies. Reliability and validity testing was performed in 2 phases. We enrolled patients into the reliability testing cohort from July 21, 1999, to September 7, 1999, and into the validity testing cohort from February 1, 2000, to May 3, 2001.

While none of the data in this report have been previously published, other data from this cohort of patients have been published as would be expected from prospective cohort investigations that have the capacity to address different issues. Specifically, the 38 patients from the RASS reliability testing cohort were those reported in the first Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) study,31 and 96 of the patients from this RASS validity testing were those reported in the second CAM-ICU study cohort.32

Patients receiving and not receiving mechanical ventilation were screened during reliability testing to ensure reliability in verbal and nonverbal patients. Any adult admitted to the ICU who did not meet the following a priori exclusion criteria was eligible for enrollment: a history of severe dementia, psychosis, or neurologic disease (n = 12); patient or family refusal to participate (n = 8); and admission to the ICU after the predefined cap of 10 study patients per day (because of research staffing limitations) had been reached (n = 18). Consecutive patients receiving mechanical ventilation were enrolled into the validity testing cohort (and followed up until ICU discharge), because the primary challenge and use for sedation scales in the ICU are for patients who are nonverbal and are intubated. Patients were excluded if they had a history of psychosis or neurologic disease (n = 16), were non–English-speaking or deaf (n = 5), were extubated or had died before nurses’ screen (n = 15), were previously enrolled in reliability cohort (n = 5), or because of patient or family refusal to participate (n = 9).

Psychoactive Medications

During this investigation, no protocol to guide analgesia, sedation, or neuromuscular blockade existed in our ICU, and no objective target levels of sedation were routinely identified according to disease state or ventilator settings. All doses of narcotics, benzodiazepines, propofol, and neuromuscular blocking agents were recorded prospectively in 8-hour intervals throughout the investigation. Administered narcotics were either morphine or fentanyl. Administered benzodiazepines were either lorazepam or midazolam (the midazolam dose was converted to lorazepam equivalents by dividing by 3 to achieve equipotent dose27). If neuromuscular blocking agents had been given within 8 hours of RASS assessment, patient observations were excluded from our pharmacologic analyses.

Performing the RASS

Prior to this investigation, raters had no experience with the RASS. Sessler et al29 from the Virginia Commonwealth University provided a 1-page handout with the RASS description and the Procedure for RASS assessment (TABLE 1) to the investigators. No other formal training was received or required. All raters
performed the RASS using the same sequence of 3 steps as outlined in Table 1. If the patients were alert or agitated prior to stimulation, they were scored 0 to +4 accordingly. If patients were not spontaneously alert, they were then called by name to look at the rater, with the duration of eye contact measured, at which time a positive response was scored accordingly as −1 to −3. If the patients did not respond to verbal stimulation, they were then physically stimulated (ie, shoulder shake and/or sternum rub) and scored according to their response as −4 or −5. If calm and not alert prior to verbal and physical stimulation, patients were then rated as −1 to −5 (as standardized in Table 1) even if they became agitated on stimulation. Assessments required less than 20 seconds.

Structure of Reliability Study Procedures

Two critical care study nurses, an intensivist, and a neuropsychiatric expert performed daily, independent RASS ratings during each patient’s ICU stay. Interrater reliability assessments were conducted in the afternoon, and none of the raters had access to the others’ scores at any time. The study nurses performed simultaneous ratings (one interacted with and rated the patient while the other observed and rated the same patient), while the intensivists and neuropsychiatric experts performed their independent RASS ratings within 4 hours of the nurses’ ratings. In addition, both nurses performed independent RS16 ratings and Glasgow Coma Scale (GCS)34 ratings for each patient.

Structure of the Validation Study Procedures

Validity, the extent to which the instrument measured what it was intended to measure, was tested in 3 ways according to standard definitions.35,36 Criterion validity, the extent to which a measure relates to a set of externally derived criteria, was tested on the first 96 patients of the validation cohort by comparing patients’ RASS levels against reference standard evaluations performed by neuropsychiatric experts (ie, a geriatric psychiatrist and a geriatric neuropsychologist) who rated patients’ levels of consciousness as normal, delirious, stuporous, or comatose using standardized definitions that did not incorporate the RASS in any way.31,32,37 The neuropsychiatric experts were blinded to the study nurses’ RASS ratings and the 2 ratings were performed within 4 hours of one another. To address 2 areas of sedation monitoring that have not been studied adequately to date,31,36 we analyzed data for patients who were and were not receiving mechanical ventilation and the ability of the RASS to identify changes in level of consciousness over time (as rated by the neuropsychiatric expert).

Construct validity, the extent to which a measure relates to the other measures that would theoretically support the concept (or construct) being measured, also should be measured whenever no universally accepted criterion exists.35,36,39 Thus, construct validity was tested 5 ways in patients with normal and abnormal consciousness: (1) RASS scores were compared with abnormalities in the “content of consciousness” as rated by the nurse using a screening examination for attention,31 which served as a measure of content of consciousness since this is the pivotal feature of delirium;22, (2) comparisons were made against ratings of the GCS, a standard instrument widely used in neurologic monitoring throughout the world; (3) RASS scores were correlated with the quantity of sedative and analgesic drugs administered to patients in the 8- and 24-hour periods prior to their assessments; (4) outcomes of planned extubation were compared with concurrent RASS scores; and (5) bispectral-XP electroencephalography (BIS-XP EEG) (Aspect Medical Systems Inc, Newton, Mass) was measured and correlated with RASS scores as described below. Both the GCS and BIS-XP EEG measurements were recorded at the same time as the RASS ratings, while the ratings by the neuropsychiatric experts occurred within 4 hours of the study nurses’ ratings. The decision to extubate was made by the attending physician according to

Table 1. The Richmond Agitation-Sedation Scale (RASS)

<table>
<thead>
<tr>
<th>Score</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+4</td>
<td>Combative</td>
<td>Overtly combative, violent, immediate danger to staff</td>
</tr>
<tr>
<td>+3</td>
<td>Very agitated</td>
<td>Pulls or removes tube(s) or catheter(s); aggressive</td>
</tr>
<tr>
<td>+2</td>
<td>Agitated</td>
<td>Frequent nonpurposeful movement, fights ventilator</td>
</tr>
<tr>
<td>+1</td>
<td>Restless</td>
<td>Anxious but movements not aggressive or vigorous</td>
</tr>
<tr>
<td>0</td>
<td>Alert and calm</td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td>Drowsy</td>
<td>Not fully alert, but has sustained awakening (eye opening/eye contact) to voice (>10 seconds)</td>
</tr>
<tr>
<td>−2</td>
<td>Light sedation</td>
<td>Briefly awakens with eye contact to voice (<10 seconds)</td>
</tr>
<tr>
<td>−3</td>
<td>Moderate sedation</td>
<td>Movement or eye opening to voice (but no eye contact)</td>
</tr>
<tr>
<td>−4</td>
<td>Deep sedation</td>
<td>No response to voice, but movement or eye opening to physical stimulation</td>
</tr>
<tr>
<td>−5</td>
<td>Unarousable</td>
<td>No response to voice or physical stimulation</td>
</tr>
</tbody>
</table>

Procedure for RASS Assessment

1. Observe patient
 - Patient is alert, restless, or agitated.
2. If not alert, state patient’s name and say to open eyes and look at speaker.
 - Patient wakes with sustained eye opening and eye contact.
 - Patient wakes with eye opening and eye contact, but not sustained.
 - Patient has any movement in response to voice but no eye contact.
3. When no response to verbal stimulation, physically stimulate patient by shaking shoulder and/or rubbing sternum.
 - Patient has any movement to physical stimulation.
 - Patient has no response to any stimulation.

Score 0 to +4
Score −1
Score −2
Score −3
Score −4
Score −5

Adapted with permission.36

©2003 American Medical Association. All rights reserved.

(Reprinted) JAMA, June 11, 2003—Vol 289, No. 22 2985
the results of spontaneous breathing trials with no knowledge of the RASS scores and without a predetermined neurologic status. Extubations were considered successful if the patient remained extubated and did not receive mechanical ventilation for 48 hours. Detailed reasons for unsuccessful extubation were not recorded.

Face validity, the extent to which an instrument appears to measure what it is intended to measure, was tested by surveying critical care nurses about whether or not the RASS was an appropriate and clinically useful measure of agitation and sedation. The survey included 4 relevant questions each worded 2 different ways and embedded within other questions regarding patient management. The survey asked nurses to rate the following 4 statements using a 5-point Likert scale (1 [strongly disagree] to 5 [strongly agree]): (1) RASS levels for agitation (+1 to +4) are clinically relevant and easy to score; (2) it makes sense clinically that the RASS assessment begins with verbal stimulation (−1 to −3) and then moves to physical stimulation (−4 to −5); (3) use of the RASS improves communication among the health care team; and (4) use of the RASS provides a team consensus for target-level sedation.

BIS-XP EEG

Bispectral index uses a nonlinear signal processor to measure brain wave activity in the form of raw electroencephalography (EEG) and to create a score ranging from 100 (awake) to 0 (no cortical activity). Both raw EEG and BIS-XP EEG data were recorded using a fronto-temporal montage with disposable sensors that were connected to a portable EEG monitor (A1050, Aspect Medical Systems Inc). As opposed to earlier versions of the BIS-XP EEG used in other investigations designed for the anesthetized surgical patients in the operating room, this version has been specifically designed for use in ICU patients who are sedated and receiving mechanical ventilation to reduce electromyographic interference.

Electrode impedance values were acceptable if they were no greater than 5 kΩ and if the threshold for acceptable signal quality index was greater than 80%. Raw EEG data was sampled at 128 samples per second and recorded continuously in real time; processed variables were downloaded and recorded every 5 seconds. The data sampling rate was 256 times per second with filter settings of 70 Hz for the high frequency (70 Hz) and 2 Hz for the low frequency. The study nurses were blinded to both the raw EEG and the BIS-XP EEG data. The continuous EEG recording was later reviewed by a separate investigator blinded to the clinical assessment ratings to identify the reported baseline value (ie, a stable portion of the tracing that the EEG would return to after the sensor was attached).

Statistical Analysis

Patients’ baseline characteristics were presented using means and SDs for continuous variables, and frequencies and proportions for dichotomous variables. Interrater reliability was determined for the RASS, RS, and GCS by comparing ratings between raters using weighted κ indices and 95% confidence intervals. For criterion validity, RASS scores were compared with the neuropsychiatric expert rating using Wilcoxon rank sum tests. As part of criterion validity, and to account for dependency among observations within an individual patient, proportional odds regression analysis with generalized estimating equations was performed to assess the neuropsychiatric expert ratings vs RASS ratings, and odds ratios were presented. Similar analysis using Wilcoxon rank sum tests assessed the difference between observations within a level of consciousness of patients receiving and not receiving mechanical ventilation. For construct validity testing, the Spearman correlation coefficient (r) was calculated for the associations between RASS scores and onset of inattention, GCS score, daily dosage of sedative drugs, and BIS-XP EEG results. Wilcoxon rank sum tests were used to assess significant differences in GCS scores according to RASS levels, and proportional odds models were used with the generalized estimating equations to analyze the relationship over time among the RASS score, GCS score, and daily dosage of sedative drugs. Statistical analyses were performed using SAS version 8.02 (SAS Institute Inc, Cary NC) and STATA version 7.0 (STATA Corp, College Station, Tex).

RESULTS

Patient Characteristics

Eighty-six patients were admitted to the medical and coronary ICUs during the reliability testing phase, of whom 38 (44%) were enrolled. During the validity testing phase, 325 consecutive patients receiving mechanical ventilation were admitted to the ICU, of whom 275 (84.6%) were enrolled. Baseline characteristics from all 313 patients are presented in Table 2. At the time of enrollment, 22 (46%) of the reliability cohort received mechanical ventilation, while all 275 of the validation cohort received mechanical ventilation. The 2 cohorts had a high baseline severity of illness as measured by Acute Physiology and Chronic Health Evaluation II (APACHE II) scores (mean [SD], 17.1 [8.7] and 25.0 [8.0]), and had a wide variety of medical diagnoses.

RASS Interrater Reliability Testing

Patients were evaluated on multiple occasions during their ICU stay. The mean (SD) RASS scores for each rater were as follows: nurse 1, −1.60 (2.16); nurse 2, −1.88 (2.20); intensivist, −1.61 (2.17); and neuropsychiatric expert, −1.50 (2.25). In 290 paired observations by nurses, both the RASS and the RS demonstrated excellent interrater reliability (weighted κ, 0.91 and 0.94, respectively), which were superior to GCS (weighted κ, 0.64; P<.001 for both comparisons). Using only the first observation for each patient (n=38), the weighted κ values for the RASS, RS, and GCS were unchanged at 0.95, 0.95, and 0.65, respectively. The interrater reliability of the RASS was very high across nurses, intensivists, and neuropsychiatric experts (Table 3). Because reliability testing was expected to be most challenging for patients receiving mechanical ventilation, we conducted an-
other analysis of interrater reliability restricted to the 22 patients who were intubated. The weighted \(\kappa \) for the RASS between the 2 nurse ratings for patients who were intubated was 0.88 (95% confidence interval, 0.78-0.97).

RASS Criterion, Construct, and Face Validity Testing

The relative frequency that the validation cohort spent in each major arousal category for 1833 observations in 275 patients indicated that the patients who received mechanical ventilation spent about one third of their time either unarousable or in a deeply sedated state (RASS score, −5 or −4; \(n = 548 \) observations), one third in a moderate to light sedation state (RASS score, −3 to −1; \(n = 625 \) observations), and one third in an alert and calm state (RASS score, 0; \(n = 619 \) observations). Spontaneous agitation (RASS score, +1 to +4; \(n = 41 \) observations), which was rated prior to stimulation, was an uncommon state (<5%) found by the study nurses.

Criterion validity was tested in 411 paired observations in the validation cohort for the first 96 patients with a median of 3 observations per patient. The results of the RASS showed excellent discrimination between levels of consciousness as rated using the neuropsychiatric expert reference standard \((P < .001 \text{ for all})\) (FIGURE 1). Furthermore, as the neuropsychiatric expert raters and RASS raters independently tracked level of consciousness within patients over successive days of ICU care, RASS scores continued to correlate with expert raters’ evaluations despite fluctuations in consciousness \((P < .001 \text{ for all})\) (TABLE 4). When comparing patients over the course of their ICU stay, the reference standard ratings of abnormal levels of consciousness (ie, delirium, stupor, and coma) compared similarly with RASS ratings regardless of intubation status: delirium \((−2 \text{ median RASS score if intubated vs } −2 \text{ median RASS score if extubated, } P = .18)\), stupor \((-3 \text{ vs } −3, P = .92)\), or coma \((-5 \text{ vs } −5, P = .62)\) (Figure 1).

Five methods were used to test construct validity: (1) RASS was correlated with onset of inattention using an attention-screening examination, the pivotal criterion for delirium \((r = 0.78, P < .001)\). (2) To compare the RASS to the GCS, 1360 paired observations (among 275 patients with a median of 3 observations per patient) showed excellent correlation and discrimination \((r = 0.91, P < .001)\) (FIGURE 2). The RASS also correlated with the GCS over time \((P < .001)\), and the odds ratio of having higher RASS scores with greater GCS scores was 1.39 \((P < .001)\). (3) We compared RASS scores with the cumulative lorazepam, propofol, fentanyl, and morphine dose over the 8-hour and 24-hour periods prior to RASS assessments (TABLE 5). As described in the “Methods” section, midazolam dose was converted into lorazepam equivalents for the purposes of these analyses. As an example of the dose-response relation-

Table 2. Patient Characteristics at Enrollment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reliability Phase ((n = 38))</th>
<th>Validation Phase ((n = 275))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>60.0 (19.0)</td>
<td>55.7 (16.5)</td>
</tr>
<tr>
<td>Men, No. (%)</td>
<td>23 (60.5)</td>
<td>140 (50.9)</td>
</tr>
<tr>
<td>Race, No. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>32 (8.2)</td>
<td>222 (80.7)</td>
</tr>
<tr>
<td>African American</td>
<td>5 (13.2)</td>
<td>53 (19.3)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 (2.6)</td>
<td>0</td>
</tr>
<tr>
<td>APACHE II score, mean (SD)*</td>
<td>17.1 (8.7)</td>
<td>25.0 (8.0)</td>
</tr>
<tr>
<td>Mechanical ventilation, No. (%)</td>
<td>22 (45.8)</td>
<td>275 (100)</td>
</tr>
</tbody>
</table>

Table 3. Interrater Reliability of the Richmond Agitation-Sedation Scale

<table>
<thead>
<tr>
<th>Rater</th>
<th>No. of Paired Observations</th>
<th>Weighted (\kappa) (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurse 1 vs nurse 2</td>
<td>290</td>
<td>0.91 (0.86-0.96)</td>
</tr>
<tr>
<td>Nurse 1 vs intensivist</td>
<td>127</td>
<td>0.79 (0.61-0.88)</td>
</tr>
<tr>
<td>Nurse 1 vs neuropsychiatric expert</td>
<td>150</td>
<td>0.82 (0.67-0.90)</td>
</tr>
<tr>
<td>Nurse 2 vs intensivist</td>
<td>128</td>
<td>0.88 (0.76-0.94)</td>
</tr>
<tr>
<td>Nurse 2 vs neuropsychiatric expert</td>
<td>151</td>
<td>0.84 (0.71-0.92)</td>
</tr>
<tr>
<td>Neuropsychiatric expert vs intensivist</td>
<td>129</td>
<td>0.91 (0.82-0.96)</td>
</tr>
</tbody>
</table>

Table 4. Comparison of Nursing vs Expert Ratings

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reliability Phase ((n = 151))</th>
<th>Validation Phase ((n = 127))</th>
<th>Wilcoxon Signed Rank Test (P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurse 1 vs Neuropsychiatric Expert</td>
<td>0.84 (0.67-0.90)</td>
<td>0.82 (0.67-0.90)</td>
<td>0.001</td>
</tr>
<tr>
<td>Nurse 2 vs Neuropsychiatric Expert</td>
<td>0.84 (0.71-0.92)</td>
<td>0.84 (0.71-0.92)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Figure 1. Criterion Validity: Richmond Agitation-Sedation Scale (RASS) Scores vs Reference Standard Evaluations Performed by a Neuropsychiatric Expert

Neuropsychiatric experts (ie, a geriatric psychiatrist or a geriatric neuropsychologist) rated patients’ levels of consciousness as normal, delirium, stuporous, or comatose. Data (median [interquartile range]) [Q1:Q3] are from 411 paired observations in the first 96 patients in the validation cohort and demonstrated significant discrimination between each level of consciousness (all \(P < .001 \)).

©2003 American Medical Association. All rights reserved.
were unsuccessful. The median (interquartile range) EEG values were 96.8 (90.0-97.6), 69.0 (57.6-87.6), and 57.4 (46.4-66.3), respectively.

Face validity was demonstrated via a survey of 26 bedside critical care nurses. According to the results of the survey, 77% of the nurses agreed or strongly agreed that the RASS levels for agitation were clinically relevant and easy to score. Regarding the construct of the sedation assessment, 92% agreed or strongly agreed with the "verbal followed by physical stimulation" scoring scheme, 69% agreed or strongly agreed that the RASS improved communication among the managing team, and 81% agreed or strongly agreed this instrument provided a consensus target for goal-directed delivery of sedative and analgesic medications.

COMMENTS

This investigation was designed to test a very brief yet structured approach to assessment of patient sedation in the ICU for reliability and validity, using a new, broader, and more rigorous set of validation procedures than those previously studied. The RASS demonstrated strong interrater reliability and criterion, construct, and face validity. In previous work, Sessler et al demonstrated strong interrater reliability of RASS between 5 nurse, pharmacist, and physician investigators in 192 consecutive patients who did or did not receive mechanical ventilation in surgical, neurosurgery, and medical ICUs. The authors further documented strong reliability between a nurse educator and 27 bedside nurses in more than 100 patient observations. Building on these data, the present study included the use of neuropsychiatric experts as reference standard raters of patients’ levels of consciousness to demonstrate criterion validity, 5 methods of confirming construct validity, and incorporating views of bedside critical care nurses for face validity.

In keeping with the stated priorities of recent critical appraisals of sedation scales,1,10-12,26 the present report shows the RASS to be valid over successive days in individual patients, to correlate with the administered dose of sedative and analgesic drugs as well as brain wave activity, and confirms that it is a reliable and valid measurement for patients who were and were not receiving mechanical ventilation.

This report and that by Sessler et al are complementary and constitute an evaluation of the RASS in more than 600 patients, both having avoided selection bias present in other investigations by enrolling consecutive patients. The large sizes of these 2 investigations, combined with the strong reliability of the instrument and the scope of our validity testing, lend strong credibility for the use of the RASS in patient management.

Strengths of the RASS

The RASS itself has several important strengths that warrant comment. Unlike other recently validated instruments,22,23 the RASS separates verbal from physical stimulation so that the patient’s level of arousal may be graded ac-

| Table 4. Neuropsychiatric Expert Rating vs Richmond Agitation-Sedation Scale (RASS) Rating: Tracking Level of Consciousness Over Time Within Patients* |
|-----------------|------------------|-----------------|
| Reference Standard Neuropsychiatric Rating |
Odds Ratios of Higher RASS Score Over Time at Given Level of Consciousness	P Value	
Normal	>100	<.001
Delirium	36	<.001
Stupor	9	<.001
Coma	1 (reference)	. . .

*To understand correlations between repeated observations over time, this generalized estimating equations analysis would be interpreted as follows: using coma as a reference point (ie, odds ratio of 1), patients rated by the neuropsychiatric experts as stuporous, delirious, or normal were 9, 36, and 100 times more likely, respectively, to have higher RASS scores across time compared to those whose ratings remained coma-like. Comparing 2 initially comatose patients with RASS scores of −5, one of whom transitioned to delirium on day 2 while the other remained comatose, the odds of the delirious patient having a higher RASS score would be 36 times greater.

Figure 2. Construct Validity: Richmond Agitation-Sedation Scale (RASS) Scores vs Glasgow Coma Scale (GCS) Scores

Data (median [interquartile range] [IQR]) are from a total of 1360 observations and demonstrate excellent correlation (r=0.91, P<.001) and discrimination (all pairs with P<.001). Median GCS for RASS+1 to+4 (n=27) was 13 (IQR 10-14) (data not shown). Generalized estimating equations analysis was used to independently evaluate association within patients over successive days of intensive care and yielded a similar result (odds ratio, 2.3, P<.001).
Table 5. Correlation Coefficients Between RASS Scores and Sedative and Analgesic Drug Equivalents*

<table>
<thead>
<tr>
<th>Sedative or Analgesic Equivalents</th>
<th>No. of Observations</th>
<th>Median Dose (IQR), mg</th>
<th>RASS vs Drug Dose</th>
<th>No. of Observations</th>
<th>Median Dose (IQR), mg</th>
<th>RASS vs Drug Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorazepam administration</td>
<td>294</td>
<td>4 (2-8)</td>
<td>Spearman r</td>
<td>494</td>
<td>5 (2-12)</td>
<td>Spearman r</td>
</tr>
<tr>
<td>Propofol administration</td>
<td>29</td>
<td>1269 (675-1896)</td>
<td>−0.32</td>
<td>.09</td>
<td>36</td>
<td>3315 (556-5814)</td>
</tr>
<tr>
<td>Fentanyl administration</td>
<td>247</td>
<td>1.6 (0.75-2.4)†</td>
<td>−0.25</td>
<td><.001</td>
<td>296</td>
<td>3 (0.9-6.5)†</td>
</tr>
<tr>
<td>Morphine administration</td>
<td>160</td>
<td>12 (0.75-2.4)</td>
<td>−0.13</td>
<td>.10</td>
<td>229</td>
<td>14 (0.9-6.5)</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; RASS, Richmond Agitation-Sedation Scale.

*Data are from the validation phase cohort. See Figure 3 for a detailed example of the dose-response relationship between RASS and 1 class of these agents (using lorazepam). Similar P values were observed using generalized estimating equations to adjust nonindependent observations within patients.

†Fentanyl is commonly reported to be 100 times more potent than morphine.33 Therefore, the median morphine equivalent dose given to these patients (as fentanyl) would equate to 160 mg over 8 hours and 300 mg over 24 hours. While this mathematical conversion may be flawed or confounded in vivo, such large values are plausible considering its initially short duration of action," the potential for rapid tolerance with fentanyl,46-48 and that fentanyl was administered as a continuous infusion rather than an intermittent bolus.

Most available evidence regarding sedatives and analgesics in ICU patients indicates that it may be less important which drugs are delivered than their proper titration using goal-directed delivery to optimize patient comfort while avoiding complications, such as prolonged mechanical ventilation or reintubation.1,3,8,55 For example, recent data showed that deeper levels of sedation at the time of extubation, measured using the RASS, were associated with a higher likelihood of reintubation.56
toms could lead to problems such as un-
care.2,10,17 On the other hand, underse-
theme of oversedation in critical
patients who received mechanical ventilation over 382
days. The RASS scores correlated with the electroen-
cephalography (EEG) scores (r = 0.64) over a range of
levels of arousal from awake and alert to coma
(P < .001). The median (interquartile range) [IQR] EEG
values from 12 RASS evaluations of 9 agitated pa-
tients was 88.1 (79.5–97.3; P < .001 for all).

While the RASS demonstrated excel-
ent face validity among our nurses, re-
ports of ongoing large-scale implemen-
tation projects using the RASS will aid in
our understanding of how to effect
sustained change in the practice pat-
terns of ICU nurses, therapists, phar-
macists, and physicians using such in-
struments. Preliminary work in this area
has already been reported from acade-
mic settings,63 but should be forth-
coming from community settings as
well.

Lastly, as a barometer of brain wave
activity, we used BIS-XP EEG moni-
toring in a method comparable with that
used by other investigators.27,42,44 The
BIS-XP used in this investigation was an
advance over that of earlier versions of
BIS because of improved screening of
an electromyographic artifact.43,64 How-
ever, the overlapping BIS values at dif-
ferent RASS levels (Figure 4) may be the
result of the broad distribution of psy-
choactive drugs administered to this
cohort and their interindividual effects
on brain wave activity or merely a limita-
tion in this emerging EEG technology.

Conclusion
The RASS, which takes less than 20 sec-
onds to perform and requires minimal
training,99 has been shown to be highly
reliable among multiple types of health
care professionals. The RASS has an ex-
\(\text{panded set of scores at pivotal levels of}
\text{sedation that are determined by pa-
\text{tients’ response to verbal vs physical}
\text{stimulation, which will help the clini-
\text{cian in titrating medications. This ex-
\text{tensive body of new data, with a vari-
\text{ety of unique approaches to assess an}
\text{agitation-sedation scale, expands the}
\text{usefulness of such instruments for pa-
\text{tient care. In accordance with recent rec-
\text{ommendations, health care profes-
\text{sionals should use valid and reliable}
\text{instruments such as the RASS to imple-
\text{ment sedative and analgesic drug deliv-
\text{ery protocols for patients receiving me-
\text{chanical ventilation. The driving unmet}
\text{need for goal-directed sedation prac-
tice has been met—now an instrument has}
\text{been shown to detect variations in}
\text{level of consciousness over time. Taken}
\text{together, advances in neurologic assess-
\text{ ment provided by the RASS and the}
\text{CAM-ICU should lead to better charac-
\text{terization of acute brain dysfunction as}
\text{an organ failure, reductions in the ran-
\text{dom variation with which patients’ seda-
\text{tives are currently managed, and appro-
\text{ priate interventions aimed at prevention}
\text{or reversal of acute brain dysfunction.}

Author Affiliations:
Department of Medicine, Divi-
sion of Allergy, Pulmonary, and Critical Medi-
cine (Drs Ely, Thomason, Wheeler, and Bernard, and
Ms Truman), and Geriatric Psychiatry and Neurosci-
en (Drs Gordon and Margolin), Center for Health
Services Research (Drs Ely, Shintani, Dittus, Gordon,
Speroff, and Ms Truman) of Vanderbilt University
School of Medicine, Nashville, Tenn; Geriatric Re-
search Education and Clinical Center of the Veterans
Administration Tennessee Valley Healthcare System,
Nashville (Drs Ely, Gordon, Speroff, and Dittus); De-
partment of Preventive Medicine, Division of Biotas-
tistics (Dr Gautam); Division of Quality and Data Man-
agement (Dr Francis), St Vincent Hospital Health
System, Indianapolis, Ind; Department of Internal Medi-
cine, Virginia Commonwealth University, Richmond
(Dr Sessler).

Author Contributions: Study concept and design: Ely,
Wheeler, Gordon, Francis, Margolin, Sessler,
Dittus, Bernard.

Acquisition of data: Ely, Truman, Wheeler, Gordon,
Francis, Margolin, Bernard.

Analysis and interpretation of data: Ely, Truman,
Shintani, Thomason, Wheeler, Speroff, Gautam,
Margolin, Sessler, Dittus, Bernard.

Drafting of the manuscript: Ely, Truman, Shintani,
Thomason.

Critical revision of the manuscript for important intel-
lectual content: Ely, Truman, Shintani, Thomason,
Wheeler, Gordon, Francis, Speroff, Gautam,
Margolin, Sessler, Dittus, Bernard.

Statistical expertise: Ely, Shintani, Speroff, Gautam.

Obtained funding: Ely, Dittus, Bernard.

Administrative, technical, or material support: Ely,
Truman, Thomason, Wheeler, Gordon, Francis,
Margolin, Dittus, Bernard.

Study supervision: Ely, Wheeler, Dittus, Bernard.

Funding/Support: Dr Ely is a recipient of the AFAR
Pharmacology in Aging Grant and the Paul Beeson Faculty
Scholar Award from the Alliance for Aging Research, a
recipient of a K23 from the National Institutes of Health
(AG01023-01A1) and the Geriatric Research Educa-
tion and Clinical Center (GRECC). Aspect Medical Sys-
tems Inc provided the necessary equipment and finan-
cial support to obtain the electroencephalographic
measurements, but was not involved with patient as-
sessments, data collection. Aspect did have access to
and helped in analysis of the data for the BIS-XP EEG
figure.

Acknowledgment: We thank the tireless and de-
oted nursing staff and respiratory care practitioners
in our ICU, who constantly strive to improve the delivery
of care for our critically ill patients.

REFERENCES

1. Osternam ME, Keenan SP, Seiferling RA, Sib-
bald W. Sedation in the intensive care unit: a system-
2. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily
interrupted sedation infusions in critically ill pa-
2000;342:1471-1477.
3. Young C, Knudsen N, Hilton A, Reves JG. Sedan-

Riker RR, Fraser GL, Simmons LE, Wilkins ML. Validating the sedation-agitation scale with the bispectral index and visual analog scale in adult ICU patients after cardiac surgery. Intensive Care Med. 2001;27:853-858.

