Collaborative Analysis of α-Synuclein Gene Promoter Variability and Parkinson Disease

Demetrius M. Maraganore, MD
Mariza de Andrade, PhD
Alexis Elbaz, MD, PhD
Matthew J. Farrer, PhD
John P. Ioannidis, MD
Rejko Krüger, MD
Walter A. Rocca, MD, MPH
Nicole K. Schneider, BA
Timothy G. Lesnick, MS
Sarah J. Lincoln, BS
Mary M. Hulihan, MPH
Jan O. Aasly, MD
Tetsuo Ashizawa, MD
Marie-Christine Chartier-Harlin, PhD
Harvey Checkoway, PhD
Carlo Ferrarese, MD, PhD
Georgios Hadjigeorgiou, MD
Nobutaka Hattori, MD, PhD
Hideshi Kawakami, MD, PhD
Jean-Charles Lambert, PhD
Timothy Lynch, BSc, FRCPI, FRCP
George D. Mellick, PhD
Spiridon Papapetropoulos, MD, PhD
Abbas Parsian, PhD
Aldo Quattrone, MD
Olaf Riess, MD
Eng-King Tan, MD, MRCP, FAMS
Christine Van Broeckhoven, PhD, DSc

Context Identification and replication of susceptibility genes for Parkinson disease at the population level have been hampered by small studies with potential biases. α-Synuclein (SNCA) has been one of the most promising susceptibility genes, but large-scale studies have been lacking.

Objective To determine whether allele-length variability in the dinucleotide repeat sequence (REP1) of the SNCA gene promoter is associated with Parkinson disease susceptibility, whether SNCA promoter haplotypes are associated with Parkinson disease, and whether REP1 variability modifies age at onset.

Design, Setting, and Participants We performed a collaborative analysis of individual-level data on SNCA REP1 and flanking markers in patients with Parkinson disease and controls. Study site recruitment, data collection, and analyses were performed between April 5, 2004, and December 31, 2005. Eighteen participating sites of a global genetics consortium provided clinical data. Genotyping was performed for SNCA REP1, −770, and −116 markers at individual sites; however, each site also provided 20 DNA samples for regenotyping centrally.

Main Outcome Measures Measures included estimations of Hardy-Weinberg equilibrium in controls; a test of heterogeneity; analyses for association of single variants or haplotypes; and survival analyses for age at onset.

Results Of the 18 sites, 11 met stringent criteria for concordance with Hardy-Weinberg equilibrium and low genotyping error rate. These 11 sites provided complete data for 2692 cases and 2652 controls. There was no heterogeneity across studies (P=.60). The SNCA REP1 alleles differed in frequency for cases and controls (P<.001). Genotypes defined by the 263 base-pair allele were associated with Parkinson disease (odds ratio, 1.43; 95% confidence interval, 1.22-1.69; P<.001 for trend). Multilocus haplotypes differed in frequency for cases and controls (global score statistic, P<.001). Two-loci haplotypes were associated with Parkinson disease only when they included REP1 as one of the loci. However, genotypes defined by REP1 alleles did not modify age at onset (P=.55).

Conclusion This large-scale collaborative analysis demonstrates that SNCA REP1 allele-length variability is associated with an increased risk of Parkinson disease.

JAMA. 2006;296:661-670 www.jama.com

©2006 American Medical Association. All rights reserved.
that cause Parkinson disease, likely via amino-acid substitutions and configurational changes in the encoded protein.6-8 \textalpha-\text{Synuclein locus} multiplication also causes Parkinson disease, likely via gene overexpression.9-13

Although \textit{SNCA} gene mutations are rare, accounting for less than 1% of Parkinson disease in the general population, abnormal aggregation of the \textit{SNCA} protein is present in all patients with Parkinson disease. The \textit{SNCA} protein is the principal component of Lewy bodies, the pathological hallmark of Parkinson disease.14 Common \textit{SNCA} variants may be associated with the risk of Parkinson disease in the general population, apart from the rare causal mutations. Sequencing of the \textit{SNCA} gene has revealed common variants including a dinucleotide repeat sequence (REP1) within the promoter. Some studies have found that certain alleles are associated with an increased risk for Parkinson disease.15-17

Functional biological data are in concordance with this observation. The \textit{SNCA} REP1 locus is a major promoter of normal gene expression in transient transfection assays in HEK293 cells using a luciferase reporter construct.18 \textalpha-\text{Synuclein gene} expression varies significantly over a 3-fold range across the different REP1 alleles, suggesting that the association of specific genotypes with an increased risk for Parkinson disease may be explained by an increase in \textit{SNCA} transcription.19,20 The recent discovery of \textit{SNCA} gene triplexion results in Lewy bodies, the pathological hallmark of Parkinson disease,15 which is associated with Parkinson disease, likely via the same morphism within the gene promoter.

We considered that a collaborative analysis of individual participants’ data (published and unpublished) may resolve the observed discrepant results.32,33 Confirmation of the association of \textit{SNCA} promoter variability with Parkinson disease would boost confidence in \textit{SNCA} gene overexpression as a common mechanism of Parkinson disease susceptibility and pathogenesis and as a plausible target for new pharmacological therapies aimed at lowering \textit{SNCA} expression (eg, RNA interference).34 Therefore, we established a global genetics consortium to determine whether \textit{SNCA} REP1 allele-length variability is associated with Parkinson disease susceptibility, whether extended \textit{SNCA} promoter variability (haplotype analyses, including REP1 and flanking markers) is associated with Parkinson disease, and whether REP1 variability modifies age at onset.

METHODS

The Genetic Epidemiology of Parkinson Disease Consortium included 3 cores (coordinating, statistical, and laboratory) and several global sites. All participating sites collected and shared biospecimens and data via the written informed consent of study participants and via the approval of institutional review boards. This included permission to publish the results of the study in a medical journal.

Coordinating Core

Following a notice of grant award from the Michael J. Fox Foundation (dated April 5, 2004; in response to a request for applications to create global genetics consortia for Parkinson disease), the coordinating core invited the corresponding authors of published genetic association studies of \textit{SNCA} REP1 and Parkinson disease to serve as global site principal investigators. These publications were identified via PubMed searches using the terms \textit{synuclein} and \textit{Parkinson}, as of April 5, 2004. The coordinating core also invited additional investigators who had previously participated in a collaborative analysis of the \textit{UCHL1} gene S18Y variant and Parkinson disease,35 or investigators who had otherwise collaborated with members of the consortium, to provide unpublished data or to conduct new studies. Between April 5, 2004, and March 31, 2005, the global site principal investigators were asked to contribute information for the study using a formatted Excel spreadsheet including the following variables: sources of participants, sample size, median age at study start and range, sex distribution, and ethnicity (for cases and controls) and median age at onset and range, distribution of familial Parkinson disease cases, and diagnostic criteria for Parkinson disease used (for cases). For all sites, race and ethnicity was self-reported by the study participants. We collected these data because a primary aim of the study was to determine whether \textit{SNCA} promoter variability was associated with Parkinson disease across populations and because a secondary aim was to determine whether there were population differences (stratified analyses). The global site principal investigators were also asked to contribute individual level clinical and genetic data (published and unpublished) using a second formatted Excel spreadsheet including the following variables: laboratory identification numbers, affected status, sex, ethnicity, age at study (for all participants); age at onset and family history of Parkinson disease (for cases); and \textit{SNCA} REP1 genotypes and −770 and −116 base-pair (bp) single-nucleotide
polymorphism (SNP) genotypes (for all participants). These SNPs were selected because data were available for multiple sites and because they were possibly informative of functional promoter variability. The individual level data were then forwarded to the statistical core.

Statistical Core

Data management and statistical analyses were performed during the period April 5, 2004, through December 31, 2005. Each global site provided data for individuals identified by study-specific laboratory identification numbers only. The data included SNCA REP1, −770, and −116 genotypes, and also clinical and demographic information. The data were archived in a SAS database maintained by the statistical core. Logical checks were performed on the data and inconsistencies were corrected through queries to the sites.

Each site also provided the statistical core with a random list of 20 laboratory identification numbers and the corresponding REP1 genotypes, for consideration of regenotyping in the laboratory core. This number of samples was chosen for regenotyping because it was compatible with resources and feasible for all sites. The statistical core checked whether these 20 genotypes fulfilled the heterozygosity criterion. Specifically, we required the proposed 20 samples to achieve at least 50% heterozygosity to ensure a mixture of genotypes. If they did, the samples were shipped to the laboratory core for regenotyping. If they did not, a revised list was requested until a list fulfilling the heterozygosity criterion was specified; all 18 study sites fulfilled the criterion.

Laboratory Core

Study-specific genotyping was performed by the laboratory core during the period October 1, 2004, through March 31, 2005. Upon the approval of the statistical core (heterozygosity checks), each global site transferred a minimum of 20 aliquots (200 ng each) of DNA to the laboratory core for regenotyping. The DNA samples were coded with study-specific laboratory identification numbers, and regenotyping was blinded to the genotypes originally determined by the global sites. The REP1 genotyping method used by the laboratory core was described elsewhere. For some of the global sites, genotyping data was not available for the SNCA REP1 or for the −770 or −116 variants. For these 5 global sites, the genotyping of all available samples was performed by the laboratory core, using methods described elsewhere.

Briefly, we genotyped SNCA REP1 allele-length variants as follows: 15 ng of genomic DNA was polymerase chain reaction (PCR)–amplified using fluorescently labeled forward and reverse primers Fam5’-CCT GCC ATA TTT GAT TGC AA-3’ and 5’GACT TGG CCC AAG ATT AAC CA-3’ designed to amplify the dinucleotide repeat polymorphism (REP1; D4S3481) in the SNCA promoter. Genotyping was performed on an ABI 3730 and allelic sizes assessed using GeneMapper version 4.0 software (Applied Biosysyms, Inc, Foster City, Calif). Genotyping of the 2 promoter SNP variants was carried out using TaqMan fluorogenic 5’ nuclease assay (Applied Biosysyms). The final volume of the PCR reaction was 2 µL, containing 2 ng of genomic DNA and 1 µL TaqMan Universal PCR Master Mix, with 0.1 µL of 20× Assay Mix C_13755957_10 for the −116 polymorphism (rs2301133) and C_16036895_10 for the −770 polymorphism (rs2619363) (Applied Biosysyms, Inc). Polymerase chain reaction master mix was dispensed into 384 well plates using a Cartesian dispensing platform (Genomic Solutions, Ann Arbor, Mich) and the PCR thermal cycle conditions were as follows: 50°C for 2 minutes, 95°C for 10 minutes to activate the DNA polymerase, followed by 40 cycles of 92°C for 15 seconds and 60°C for 1 minute. End point fluorescent readings were detected on an ABI 7900 and genotype analysis was performed using SDS version 2.2 software (Applied Biosysyms). When genotyping variable length markers such as REP1, a common reference is necessary for defining the allele length. Thus, published data may not be comparable due to differences in allele calling. Our central regenotyping allowed us to standardize REP1 allele length calls for each Global Site according to the Laboratory Core determinations. Because published genotyping data from nonparticipating sites could not be standardized, those data were excluded.

Analysis

We conducted an analysis of the assembled individual-level data to determine whether SNCA REP1 variability conferred Parkinson disease susceptibility. All tests were considered significant at P<.05. We used 2 tests of heterogeneity of the odds ratios (ORs) from the studies, Cochran’s Q and I² statistics, and assessed the goodness-of-fit of Hardy-Weinberg equilibrium for controls in each study. We set a priori that only studies fulfilling Hardy-Weinberg equilibrium and with at least 90% REP1 interlaboratory agreement would be included in the main analyses (arbitrary threshold). However, we also performed sensitivity analyses including all studies.

Because not all studies had data available for adjustment variables, we first performed analyses using unadjusted data. We tested for association of the REP1 alleles with Parkinson disease using a standard χ² test. We also tested for association of the genotypes with Parkinson disease in each site using logistic regression models and overall using a random-effects method. The attributable fraction in the population of REP1 variability was calculated with the formula: frequency × (OR −1)/(1 + frequency × (OR −1)). To test for statistical association of the genotypes with Parkinson disease while accounting for differences in sex and age at study between cases and controls, we used logistic regression mixed models where site was a random effect and genotype was a fixed effect.

Likelihood ratio tests were calculated by dividing the likelihood of a regression model including and excluding the gene, adjusting both models for
sex and age at examination. This statistic was compared with a χ² distribution with the appropriate degrees of freedom to produce a P value. We decided a priori that rare alleles (frequencies <0.1%) were to be excluded from the analyses. Specifically, we considered only the REP1 alleles 259 bp, 261 bp, and 263 bp because the other alleles were rare. We performed analyses for strata defined by family history (≥1 first-degree relatives with Parkinson disease), age at study (using a median cutoff), and sex using the same methods detailed above. We also examined whether the results of small studies differed from those of larger ones, and whether the results of small studies differed significantly from those of larger ones, and further assessed bias by excluding the data from the first published study that might be considered as hypothesis generating.31

We conducted multiple locus analyses of the SNCA REP1, −770 and −116 variants to determine whether core promoter variability is associated with an increased risk for Parkinson disease using score tests for the association between Parkinson disease and inferred haplotypes, as previously described.30 Finally, we explored the possibility that SNCA REP1 genotypes were associated with Parkinson disease age at onset. We performed age at onset survival analyses for cases only. Kaplan-Meier survival plots were generated to describe the survivorship functions, and likelihood ratio tests from Cox proportional hazards models were used to test for association. Analyses were performed for cases overall and stratified for sex and family history of Parkinson disease.

All statistical analyses were performed in SAS version 9.1 (SAS Institute Inc, Cary, NC) or S-Plus version 7 (Insightful Corp, Seattle, Wash). All P values were 2-tailed.

RESULTS

Participating Sites

All methods (including study site recruitment, data collection, and analyses) were completed between April 5, 2004, and December 31, 2005. We initially identified 9 teams that had published SNCA REP1 data. We identified another 6 teams with unpublished REP1 data and also 5 teams that were willing to participate in a collaborative study but had no REP1 data yet. Of these 20 teams, 2 declined participation because one corresponding author was lost to contact and because the other no longer had access to individual level data.

Eighteen global sites agreed to participate in the study (TABLE 1). The sites either had published (n=7) or unpublished (n=6) SNCA REP1 data available or were able to provide DNA to the laboratory core for SNCA REP1 genotyping (n=5). Seven of the 18 global sites were excluded from the main analyses: 1 site provided no controls, 3 sites had REP1 genotypes deviating significantly from Hardy-Weinberg equilibrium in controls, and 3 sites had interlaboratory reliability for the REP1 genotyping below 90%, which resulted in a loss of 1412 cases and 1136 controls. Of the 11 sites included in analyses, there were 1129 cases and 652 controls represented by published studies (4 sites). There were 1563 cases and 2000 controls represented by the unpublished studies (7 sites). In total, the 11 sites included contributed complete data for 2692 Parkinson disease cases and 2652 unrelated controls. Data were missing for at least 1 of the adjustment variables for 6 cases (0.2%) and 198 controls (7.5%). These individuals were included in the unadjusted analyses and excluded from the adjusted analyses.

Association of Parkinson Disease With REP1 Alleles

There was no heterogeneity of the ORs across the 11 sites. The allele frequencies were significantly different for the Parkinson disease cases vs the controls (P<.001). TABLE 2 summarizes the allele distributions for the 11 studies.

TABLE 3 and FIGURE 1 summarize the results of logistic mixed models for the 263 bp allele, using sites as random effects, and including age and sex. For the trend model (linear trend in log-odds for 0, 1, and 2 alleles), the 263 bp genotypes were associated with an increased risk for Parkinson disease (OR, 1.43; 95% confidence interval [CI], 1.22-1.69; P<.001). The association was significant also using alternative genetic models and in subgroup analyses.

TABLE 4 and FIGURE 2 summarize the results of logistic mixed models for the 259 bp allele. Overall, we found a significant association between 259 bp genotypes and a reduced risk of Parkinson disease (OR, 0.86; 95% CI, 0.79-0.94; P=.002 for trend). There was a trend of increasing risk with increasing bp length (data not shown; P<.001).

Bias Diagnostics and Sensitivity Analyses

The ORs for the 263 bp allele were similar in published studies (OR, 1.40; 95% CI, 1.01-1.94) and unpublished studies (OR, 1.43; 95% CI, 1.19-1.73). The log ORs were not significantly associated with the sample size of the study (regression coefficient P=.78 for 263 bp and P=.99 for 259 bp analyses). We observed the same overall findings in analyses including the 6 sites that did not meet Hardy-Weinberg equilibrium or genotyping reliability criteria. Specifically, the distribution of alleles and of genotypes defined by either the 263 bp allele or by the 259 bp allele remained significantly different for the 3730 cases and the 3550 controls (allele distribution, P<.001; 263 bp, P<.001 for trend; and 259 bp, P<.001 for trend).

Haplotype Analyses

For the 11 sites combined, the frequency of haplotypes defined by the REP1, −770, and −116 loci was significantly different in cases and controls (global score statistic, P<.001). For haplotypes defined by only 2 of the 3 loci, the frequency of haplotypes differed significantly in cases and controls only when REP1 was 1 of the 2 loci considered. Specifically, when considering the REP1 and −770 or REP1 and −116 loci, the global score statistic P values were both <.001. However, when considering the −770 and −116 loci...
only, the global score statistic P value was .15. Therefore, variability at the REP1 locus was driving the haplotype associations.

Age at Onset of Parkinson Disease Analyses

Dinucleotide repeat sequence genotypes had no effect on the age at onset of Parkinson disease overall ($P = .55$).

The median (range) age at onset for genotypes defined by the 3 common alleles were as follows: 259/259, 61.0 years (22.0-81.9 years); 259/261, 60.2 years (28.0-88.0 years); 259/263, 58.1 years (28.0-86.9 years); 261/261, 61.0 years (22.0-88.0 years); 261/263, 60.0 years (26.0-88.0 years); 263/263, 59.7 years (42.0-79.0 years). Similarly, REP1 genotypes had no effect on age at onset of Parkinson disease for strata defined by women ($P = .81$), men ($P = .54$), familial ($P = .63$), or sporadic ($P = .37$) Parkinson disease.

COMMENT

Our large-scale collaborative analysis documents that variability in the length of a dinucleotide repeat sequence (REP1) within the SNCA promoter is associated with Parkinson disease susceptibility. Genotypes that included the 263 bp allele were associated with an increased risk for Parkinson disease, while genotypes that included the 239 bp allele were associated with a reduced risk for Parkinson disease. Haplotypes

Table 1. Characteristics of the 18 Studies Included in the Collaborative Reanalysis

<table>
<thead>
<tr>
<th>Investigator Location</th>
<th>Cases†</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigator Location</td>
<td>No.‡</td>
<td>Age at Examination (Range), y</td>
</tr>
<tr>
<td>Aasly Trondheim, Norway</td>
<td>401</td>
<td>70 (41-92)</td>
</tr>
<tr>
<td>Ashizawa Houston, Tex</td>
<td>100</td>
<td>65 (32-84)</td>
</tr>
<tr>
<td>Charter-Harlin Lille, France</td>
<td>118</td>
<td>67 (38-88)</td>
</tr>
<tr>
<td>Checkoway Seattle, Wash</td>
<td>160</td>
<td>68 (40-88)</td>
</tr>
<tr>
<td>Elbaz Paris, France</td>
<td>200</td>
<td>69 (37-76)</td>
</tr>
<tr>
<td>Ferrarese Monza, Italy</td>
<td>114</td>
<td>67 (44-86)</td>
</tr>
<tr>
<td>Hadjiigeorgiou Larissa, Greece</td>
<td>152</td>
<td>72 (40-95)</td>
</tr>
<tr>
<td>Hattori Tokyo, Japan</td>
<td>328</td>
<td>66 (33-92)</td>
</tr>
<tr>
<td>Kawakami Hiroshima, Japan</td>
<td>204</td>
<td>69 (48-88)</td>
</tr>
<tr>
<td>Lynch Dublin, Ireland</td>
<td>221</td>
<td>61 (21-87)</td>
</tr>
<tr>
<td>Maraganore Rochester, Minn</td>
<td>678</td>
<td>68 (31-99)</td>
</tr>
<tr>
<td>Mellick Brisbane, Australia</td>
<td>373</td>
<td>68 (33-89)</td>
</tr>
<tr>
<td>Pappetropoulos Miami, Fla</td>
<td>77</td>
<td>70 (29-87)</td>
</tr>
<tr>
<td>Parsian Little Rock, Ark</td>
<td>217</td>
<td>69 (27-89)</td>
</tr>
<tr>
<td>Quattrone Catanzaro, Italy</td>
<td>190</td>
<td>68 (43-88)</td>
</tr>
<tr>
<td>Riess Tübingen, Germany</td>
<td>163</td>
<td>68 (38-91)</td>
</tr>
<tr>
<td>Tan Singapore</td>
<td>247</td>
<td>65 (27-91)</td>
</tr>
<tr>
<td>Van Broeckhoven Antwerp, Belgium</td>
<td>186</td>
<td>66 (40-87)</td>
</tr>
</tbody>
</table>

*Elipses indicate that data were not available.
†All the sources for genetic testing were from a clinical setting except in Seattle, Wash, and Paris, France, which were from a community setting. All the participants were white, except those from Singapore and Japan.
‡Indicates number of participants.
Table 2. Allele Distributions for the 11 Studies That Met Hardy-Weinberg Equilibrium and Genotyping Reliability Criteria

<table>
<thead>
<tr>
<th>Investigator, Location</th>
<th>Total No. of Alleles*</th>
<th>263 bp Alleles*</th>
<th>259 bp Alleles*</th>
<th>261 bp Alleles*</th>
<th>Overall P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>1294 (0.24)</td>
<td>.002</td>
<td>3647 (0.68)</td>
<td>.77</td>
<td><.001</td>
</tr>
<tr>
<td>Control</td>
<td>1413 (0.27)</td>
<td></td>
<td>3579 (0.68)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aasly, Trondheim, Norway</td>
<td>185 (0.24)</td>
<td>.64</td>
<td>516 (0.66)</td>
<td>.08</td>
<td>.06</td>
</tr>
<tr>
<td>Control</td>
<td>243 (0.23)</td>
<td></td>
<td>746 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashizawa, Houston, Tex</td>
<td>43 (0.22)</td>
<td>.22</td>
<td>137 (0.69)</td>
<td>.96</td>
<td>.03</td>
</tr>
<tr>
<td>Case</td>
<td>54 (0.27)</td>
<td></td>
<td>140 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>114 (0.24)</td>
<td></td>
<td>334 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checkoway, Seattle, Wash</td>
<td>115 (0.29)</td>
<td>.89</td>
<td>263 (0.66)</td>
<td>.81</td>
<td>.96</td>
</tr>
<tr>
<td>Case</td>
<td>252 (0.28)</td>
<td></td>
<td>590 (0.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>114 (0.24)</td>
<td></td>
<td>334 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elbaz, Paris, France</td>
<td>115 (0.29)</td>
<td>.89</td>
<td>263 (0.66)</td>
<td>.81</td>
<td>.96</td>
</tr>
<tr>
<td>Case</td>
<td>252 (0.28)</td>
<td></td>
<td>590 (0.66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>114 (0.24)</td>
<td></td>
<td>334 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrarese, Monza, Italy</td>
<td>85 (0.28)</td>
<td>.08</td>
<td>200 (0.67)</td>
<td>.19</td>
<td>.18</td>
</tr>
<tr>
<td>Case</td>
<td>82 (0.35)</td>
<td></td>
<td>142 (0.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>114 (0.24)</td>
<td></td>
<td>334 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadjigeorgiou, Larissa, Greece</td>
<td>110 (0.30)</td>
<td>.005</td>
<td>996 (0.69)</td>
<td>.03</td>
<td>.02</td>
</tr>
<tr>
<td>Case</td>
<td>110 (0.30)</td>
<td></td>
<td>996 (0.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>229 (0.63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mellick, Brisbane, Australia</td>
<td>163 (0.22)</td>
<td>.05</td>
<td>513 (0.70)</td>
<td>.22</td>
<td>.12</td>
</tr>
<tr>
<td>Case</td>
<td>196 (0.27)</td>
<td></td>
<td>494 (0.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>151 (0.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quattrocchi, Catanzano, Italy</td>
<td>99 (0.29)</td>
<td>.30</td>
<td>252 (0.67)</td>
<td>.47</td>
<td>.55</td>
</tr>
<tr>
<td>Case</td>
<td>105 (0.30)</td>
<td></td>
<td>227 (0.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>151 (0.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ries, Tübingen, Germany</td>
<td>66 (0.20)</td>
<td>.41</td>
<td>225 (0.69)</td>
<td>.38</td>
<td>.02</td>
</tr>
<tr>
<td>Case</td>
<td>88 (0.23)</td>
<td></td>
<td>278 (0.72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>114 (0.24)</td>
<td></td>
<td>334 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Broeckhoven, Antwerpen, Belgium</td>
<td>75 (0.20)</td>
<td>.005</td>
<td>264 (0.71)</td>
<td>.21</td>
<td>.002</td>
</tr>
<tr>
<td>Case</td>
<td>108 (0.29)</td>
<td></td>
<td>248 (0.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>114 (0.24)</td>
<td></td>
<td>334 (0.70)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: bp, base pair.

*Number of alleles (2 per participant); the number of participants are half the number of alleles indicated; allele frequencies.

†P values comparing frequencies in cases and controls for a given allele vs the other 2 alleles combined. The P values were obtained from a χ^2 distribution with 1 degree of freedom.

‡Overall P value comparing frequencies in cases and controls for all alleles. The P values were obtained from a χ^2 distribution with 2 degrees of freedom.

Table 3. Results of Logistic Regression Mixed Models for Genotypes Defined by the 263 Base Pair vs Others

<table>
<thead>
<tr>
<th>Sample or Stratum</th>
<th>No. of Cases/ Controls</th>
<th>Trend OR (95% CI)†</th>
<th>P Value</th>
<th>Dominant OR (95% CI)†</th>
<th>P Value</th>
<th>Recessive OR (95% CI)†</th>
<th>P Value</th>
<th>Unrestricted OR (95% CI)†</th>
<th>P Value</th>
<th>Unrestricted OR (95% CI)†</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2396/2454</td>
<td>1.43 (1.22-1.69)</td>
<td><.001</td>
<td>1.44 (1.21-1.73)</td>
<td><.001</td>
<td>2.46 (0.95-6.37)</td>
<td>.06</td>
<td>1.41 (1.19-1.68)</td>
<td><.001</td>
<td>2.57 (0.99-6.37)</td>
<td>.05</td>
</tr>
<tr>
<td>Negative family history</td>
<td>2241/676</td>
<td>1.33 (1.03-1.72)</td>
<td>.03</td>
<td>1.29 (0.99-1.66)</td>
<td>.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive family history</td>
<td>413/38</td>
<td>1.67 (1.45-1.96)</td>
<td>.40</td>
<td>1.66 (1.40-1.98)</td>
<td>.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
</tr>
<tr>
<td>≤68</td>
<td>1361/1317</td>
<td>1.47 (1.17-1.84)</td>
<td>.001</td>
<td>1.49 (1.18-1.90)</td>
<td>.001</td>
<td>1.65 (1.48-1.88)</td>
<td>.43</td>
<td>1.49 (1.17-1.90)</td>
<td>.001</td>
<td>1.74 (1.51-2.00)</td>
<td>.38</td>
</tr>
<tr>
<td>>68</td>
<td>1325/1102</td>
<td>1.31 (1.03-1.66)</td>
<td>.03</td>
<td>1.30 (1.01-1.66)</td>
<td>.04</td>
<td>3.08 (0.65-14.48)</td>
<td>.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>1083/1205</td>
<td>1.33 (1.06-1.67)</td>
<td>.01</td>
<td>1.35 (1.06-1.72)</td>
<td>.01</td>
<td>1.65 (1.38-2.06)</td>
<td>.39</td>
<td>1.34 (1.05-1.71)</td>
<td>.02</td>
<td>1.72 (1.26-3.22)</td>
<td>.35</td>
</tr>
<tr>
<td>Men</td>
<td>1603/1249</td>
<td>1.54 (1.22-1.95)</td>
<td>.001</td>
<td>1.52 (1.20-1.97)</td>
<td>.001</td>
<td>1.63 (1.48-1.90)</td>
<td>.08</td>
<td>1.48 (1.16-1.89)</td>
<td>.002</td>
<td>1.63 (1.26-2.12)</td>
<td>.08</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; OR, odds ratio; X, alternate REP1 alleles; ellipses indicate that the model did not converge to final estimates.

*Restricted to 11 sites meeting Hardy-Weinberg equilibrium and genotyping reliability criteria (8 sites had data for positive family history); sites treated as random effect in logistic regression mixed effects models; models adjusted for age (continuous) and sex as appropriate; all available participants with nonmissing data were used where possible.

†Assuming a linear trend in log odds for 0, 1, and 2 alleles
defined by SNCA REP1 and 2 SNPs flanking the core promoter at the −770 and −116 positions were associated with Parkinson disease, but REP1 variability was driving this association. Although genetic association studies are prone to false-positive findings, we think this is an unlikely explanation of our findings because (1) we only tested 3 hypotheses; (2) our sample size was large and the alleles were common (sufficient power); (3) we used rigorous quality measures in our data sharing, genotyping, and analyses; (4) our findings were generalizable to multiple populations worldwide; and (5) our findings had biological plausibility. In summary, our findings further highlight the importance of SNCA as a susceptibility gene for Parkinson disease.

Previous studies suggested that SNCA REP1 allele length variability conferred an increased risk for Parkinson disease via a mechanism of gene overexpression. If so, interventions targeting SNCA expression may reduce the risk for developing Parkinson disease (primary prevention). However, there is no evidence to date that SNCA gene variability modifies prognostic outcomes for Parkinson disease, and it is therefore uncertain whether therapies to reduce SNCA expression would slow the progression of Parkinson disease (secondary prevention). We observed no modifying effect for SNCA REP1 genotypes on age at onset of Parkinson disease. This was unexpected, because gene multiplication carriers develop Parkinson disease at a younger age proportionate to the number of gene copies (overexpression), and because a small study recently reported an association of REP1 and age at onset of Parkinson disease in individuals from Greece. It is possible therefore that the association of SNCA REP1 variability with Parkinson disease is through a mechanism other than gene overexpression or that the modest degree of overexpression is sufficient to increase risk but not to modify disease characteristics or outcomes. Longitudinal studies of Parkinson disease cohorts are required to determine whether SNCA is also a modifier gene for Parkinson disease.

There are several strengths and also weaknesses inherent to collaborative analyses of genetic association studies. A strength of our study is that we included published and unpublished data from several diverse sites worldwide. The combined sample size for our analyses was substantial, and to our knowledge this represents the largest case-control study of Parkinson disease to date. We excluded studies that

Table 4. Results of Logistic Regression Mixed Models for Genotypes Defined by the 259 Base Pair Allele

<table>
<thead>
<tr>
<th>Sample or Stratum†</th>
<th>No. of Cases/Controls</th>
<th>Dominant 259/259 vs X/X OR (95% CI)</th>
<th>P Value</th>
<th>Recesive 259/259 vs X/X OR (95% CI)</th>
<th>P Value</th>
<th>Unrestricted 259/259 vs X/X OR (95% CI)</th>
<th>P Value</th>
<th>Unrestricted 259/259 vs X/X OR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2896/2454</td>
<td>0.86 (0.79-0.94)</td>
<td>0.002</td>
<td>0.85 (0.76-0.96)</td>
<td>0.01</td>
<td>0.86 (0.78-0.94)</td>
<td>0.04</td>
<td>0.72 (0.57-0.92)</td>
<td>0.01</td>
</tr>
<tr>
<td>Negative family history</td>
<td>2241/676</td>
<td>0.98 (0.85-1.13)</td>
<td>0.75</td>
<td>1.00 (0.83-1.19)</td>
<td>0.98</td>
<td>0.93 (0.84-1.03)</td>
<td>0.49</td>
<td>0.84 (0.64-1.08)</td>
<td>0.58</td>
</tr>
<tr>
<td>Positive family history</td>
<td>413/36</td>
<td>0.66 (0.40-1.06)</td>
<td>0.08</td>
<td>0.73 (0.43-1.22)</td>
<td>0.30</td>
<td>0.25 (0.07-0.86)</td>
<td>0.03</td>
<td>0.84 (0.48-1.54)</td>
<td>0.58</td>
</tr>
<tr>
<td>Age, year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤68</td>
<td>1361/1317</td>
<td>0.89 (0.78-1.01)</td>
<td>0.07</td>
<td>0.86 (0.73-1.01)</td>
<td>0.06</td>
<td>0.67 (0.63-1.21)</td>
<td>0.42</td>
<td>0.86 (0.73-1.02)</td>
<td>0.09</td>
</tr>
<tr>
<td>>68</td>
<td>1325/1137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68 (0.49-0.94)</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>1083/1205</td>
<td>0.88 (0.77-1.01)</td>
<td>0.07</td>
<td>0.90 (0.76-1.07)</td>
<td>0.24</td>
<td>0.68 (0.48-0.96)</td>
<td>0.03</td>
<td>0.95 (0.80-1.14)</td>
<td>0.62</td>
</tr>
<tr>
<td>Men</td>
<td>1603/1249</td>
<td>0.85 (0.75-0.97)</td>
<td>0.01</td>
<td>0.81 (0.69-0.96)</td>
<td>0.01</td>
<td>0.84 (0.62-1.16)</td>
<td>0.29</td>
<td>0.81 (0.69-0.97)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; OR, odds ratio; REP1, alternate REP1 alleles; ellipses indicate that the model did not converge to final estimates.

*Restricted to 11 sites meeting Hardy-Weinberg equilibrium and genotyping reliability criteria (8 sites had data for positive family history; sites treated as random effect in logistic regression mixed effects models; models adjusted for age (continuous) and sex as appropriate; all available participants with nonmissing data were used where possible.

†Assuming a linear trend in log-odds for 0, 1, and 2 alleles.

©2006 American Medical Association. All rights reserved.
Our findings.24 The authors of that study
conclusions that were in part consistent with
limited published data reached conclu-
sions disease, a meta-analysis of more
studies with reliable genotyping, we
cluded in the analyses only those stud-
ies at the time that the collaborative
analysis was designed. Extended haplo-
type analyses may have been more in-
formative. However, we also note that
haplotype-tagging SNPs may be in part
population-specific, precluding their
value for collaborative analyses of data
from many centers worldwide. A gene-
based analysis rather than a single SNP
or haplotype-tagging SNP approach may
be more appropriate for replication stud-
ies of candidate genes across diverse
populations.33

The results did not differ signifi-
cantly in the sensitivity analyses in-
cluding 6 additional studies that did not
fulfill Hardy-Weinberg equilibrium or
genotyping reliability criteria. The 3
studies that did not fulfill Hardy-
Weinberg equilibrium criteria were not
of 1 ethnicity or race. This would ar-
range against population genetic forces
as the source of the deviation from ex-
pectancy. More likely, laboratory er-
ror was the source of the deviation be-
cause the genotyping of microsatellite
markers can be problematic. Indeed, for
3 additional studies, the reliability of the
REP1 genotyping was clearly in ques-
tion. Even so, although the exclusion of
these 6 studies resulted in a nearly
30% reduction in the total sample size,
this quality measure had little impact
on the results of the study. We cannot
exclude the possibility that other site-
specific differences may have biased the
results of the study. However, we ob-
erved no statistically significant heter-
genosity of the ORs, and we ad-
justed our analyses for study (where
appropriate). Furthermore, a qualita-
tive assessment suggested that other
study differences, such as diagnostic cri-
tera (Table 1), did not seem to asso-
ciate with the distribution of ORs
(greater or smaller than 1, Figure 1 and
Figure 2).

In conclusion, our study demonstra-
tes that the SNCA gene is not only a
rare cause of autosomal dominant Par-
kinson disease in some families49 but
also a susceptibility gene for Parkinson
disease at the population level. Based on
our results, we estimate that REP1 lo-
cus variability may explain approxi-
mately 3% of the risk in the general
population. This is in the same range as
the population effect of other common
variants implicated in Parkinson dis-
ease."
ization of methods (including statistical adjustments for multiple possible confounders) would be desirable. Similarly, large-scale collaborations will be required to document interactions of SNCA with other genes or environmental factors conferring susceptibility to Parkinson disease.36,37

Author Affiliations: Departments of Neurology (Drs Maraganore and Rocca) and Health Sciences Research (Drs de Andrade and Rocca and Ms Schneider and Mr Lesnick), Mayo Clinic College of Medicine, Rochester, Minn; Institut National de la Santé et de la Recherche Médicale Unité 708, University Pierre et Marie Curie, Paris, France (Dr Elbaz); Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Fla; Drs Maraganore and Rocca reported a provisional patent application for a device that treats neurodegenerative diseases, which has been licensed to Abylum Pharmaceuticals Inc. Dr Maraganore and Mr Lesnick reported a provisional patent application for Parkinson-related diseases, which is owned by Perlegen Sciences Inc. Dr Maraganore reported consulting for Pfizer, for which he received no compensation. Dr Farrer reported a US patent application for Parkinson disease markers and European provisional patent applications for idio-typic antibodies in PARK8, a locus for familial Parkinson disease and identification of a novel LRRK2 mutation, 6055G→A (G2019S), linked to autosomal dominant parkinsonism in families from several European populations. Dr Farrer reported a consulting relationship with Amgen Inc for which no payments have been made to date.

Critical revision of the manuscript for important intellectual content: Maraganore, de Andrade, Elbaz, Ioannidis, Krüger, Rocca, Schneider, Lesnick, Lincoln, Hulihan, Aasly, Ashizawa, Chartier-Harlin, Checkoway, Ferrarese, Battorini, Kawakami, Lynch, Mellick, Papapetropoulos, Parisi, Quattrone, Riess, Tan, Van Broeckhoven.

Financial Disclosures: Drs Maraganore and Farrer reported a US provisional patent application for a device that treats neurodegenerative diseases, which has been licensed to Abylum Pharmaceuticals Inc. Dr Maraganore and Mr Lesnick reported a provisional patent application for Parkinson-related diseases, which is owned by Perlegen Sciences Inc. Dr Maraganore reported consulting for Pfizer, for which he received no compensation. Dr Farrer reported a US patent application for Parkinson disease markers and European provisional patent applications for idio-typic antibodies in PARK8, a locus for familial Parkinson disease and identification of a novel LRRK2 mutation, 6055G→A (G2019S), linked to autosomal dominant parkinsonism in families from several European populations. Dr Farrer reported a consulting relationship with Amgen Inc for which no payments have been made to date.

Gene Therapy of Parkinson’s Disease Consortium Investigators: Principal Investigator: Demetrius M. Maraganore, MD, Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minn; Co-Principal Investigator: Drs A. Rocca, MPH, Department of Health Care Policy, Harvard Medical School, Boston, MA; Dr Mellick, Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minn; Coordinating Core: Alexis Elbaz, MD, PhD, Institut National de la Santé et de la Recherche Médicale Unité 708, University Pierre et Marie Curie, Paris, France; Demetrius M. Maraganore, MD, Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minn; Laboratory Core: Matthew J. Farrer, PhD, Department of Neuroscience, Mayo Clinic College of Medicine, Rochester, Minn; Center: Hirofumi Maruyama, MD, PhD, Department of Neurology, University of Washington, Seattle, WA; Gianni Pezzoli, MD, Parkinson Disease Research Center, University of Milan, Italy; Rebecca Ashizawa, MD, PhD, Department of Neurology, University of Washington, Seattle, WA.

Critical revision of the manuscript for important intellectual content: Maraganore, Elbaz, Farrer, Krüger, Rocca, Schneider, Lesnick, Checkoway, Hattori, Mellick, Papapetropoulos, Aasly, Chartier-Harlin, Checkoway, Ferrarese, Kwon, Lincoln, Hulihan, Aasly, Ashizawa, Chartier-Harlin, Checkoway, Ferrarese, Battorini, Kawakami, Lynch, Mellick, Papapetropoulos, Parisi, Quattrone, Riess, Tan, Van Broeckhoven.

Statistical analysis: Andrade, Elbaz, Ioannidis, Rocca, Schneider, Lesnick, Checkoway, Hadjigeorgiou.

Obtained funding: Maraganore, Krüger, Aasly, Chartier-Harlin, Checkoway, Ferrarese, Battorini, Kawakami, Lynch, Ioannidis, Krüger, Rocca, Schneider, Lesnick, Checkoway, Hadjigeorgiou.

Study supervision: Maraganore, Elbaz, Farrer, Lincoln, Chartier-Harlin, Quattrone, Riess, Van Broeckhoven.

Critical revision of the manuscript for important intellectual content: Maraganore, Elbaz, Farrer, Krüger, Rocca, Hulihan, Aasly, Ashizawa, Chartier-Harlin, Ferrarese, Battorini, Kawakami, Lynch, Ioannidis, Krüger, Rocca, Schneider, Lesnick, Checkoway, Hadjigeorgiou.

Critical revision of the manuscript for important intellectual content: Maraganore, Elbaz, Farrer, Krüger, Rocca, Hulihan, Aasly, Ashizawa, Chartier-Harlin, Ferrarese, Battorini, Kawakami, Lynch, Ioannidis, Krüger, Rocca, Schneider, Lesnick, Checkoway, Hadjigeorgiou.

Critical revision of the manuscript for important intellectual content: Maraganore, Elbaz, Farrer, Krüger, Rocca, Hulihan, Aasly, Ashizawa, Chartier-Harlin, Ferrarese, Battorini, Kawakami, Lynch, Ioannidis, Krüger, Rocca, Schneider, Lesnick, Checkoway, Hadjigeorgiou.

Critical revision of the manuscript for important intellectual content: Maraganore, Elbaz, Farrer, Krüger, Rocca, Hulihan, Aasly, Ashizawa, Chartier-Harlin, Ferrarese, Battorini, Kawakami, Lynch, Ioannidis, Krüger, Rocca, Schneider, Lesnick, Checkoway, Hadjigeorgiou.
α-SYNUCLEIN GENE PROMOTER AND PARKINSON DISEASE

analysis, manuscript preparation) by the Coordinating, Statistical, and Laboratory Cores. Individuals with families were made possible by funding from the following sources, listed by global site principal investigators: The Norwegian Parkinson Foundation and the Regber Legacy (Dr. Elbaz); the National Institutes of Health grants E050469 and E01750 (Dr. Checkoway); Institut National de la Santé et de la Recherche Médicale, Institut Pasteur de Lille, Mutualite Sociale Agricole, and the French Ministry of the Environment (Dr. Elbaz); the National Institutes of Health grants E01750 and N39397 (Dr. Maraganore); the Geriatric Medical Foundation of Queensland and Parkinson's Queensland Inc (Dr. Mellick); the National Institute of Health grants AA09515, N541509, and N539913 (Dr. Parisian); the Ministry of Education and Research of Germany “BBMF,” Program NGFN2, grants 01GSO468 (Dr. Riess); the National Medical Research Council, Singapore (Dr. Tan); and the European Union contract LSHM-CT-2003-503330 (APOSIS; Dr. Van Broeckhoven).

Role of the Sponsor: The sponsors of this study did not participate in the design and conduct of the study, in the collection, analysis, or interpretation of the data, or in the preparation, review, or approval of the manuscript.

Previous Presentations: The results of the study were presented in part at the 58th Annual Meeting of the American Academy of Neurology, San Diego, Calif., April 4, 2006.

REFERENCES

©2006 American Medical Association. All rights reserved.