Efficacy and Safety of Edifoligide, an E2F Transcription Factor Decoy, for Prevention of Vein Graft Failure Following Coronary Artery Bypass Graft Surgery

PREVENT IV: A Randomized Controlled Trial

PREVENT IV Investigators*

Coronary artery bypass graft (CABG) surgery is one of the most common surgical procedures performed in the United States. In appropriately selected patients, CABG surgery results in improved survival, relief of angina, and improved quality of life. Despite frequent use of internal thoracic artery (ITA) grafts, autologous saphenous vein remains the most frequently used conduit. The long-term patency of vein grafts is limited and graft failure has consequences similar to those of native coronary artery disease: recurrent angina, myocardial infarction (MI), additional revascularization procedures, and premature death. Neointimal hyperplasia leading to accelerated atherosclerosis and thrombosis is one proposed mechanism of vein graft failure. Neointimal hyperplasia begins as an adaptive response to the increased pressure and shear forces of arterial circulation. Hyperplasia results from proliferation and migration of vascular smooth muscle cells, which release cytokines that degrade the surrounding matrix and contribute to an inflammatory and highly atherogenic environment. The E2F transcription factors have been implicated in the up-regulation of several genes believed to play a key role in the initiation of neointimal hyperplasia.

Context Coronary artery bypass graft (CABG) surgery with autologous vein grafting is commonly performed. Progressive neointimal hyperplasia, however, contributes to considerable vein graft failure. Edifoligide is an oligonucleotide decoy that binds to and inhibits E2F transcription factors and thus may prevent neointimal hyperplasia and vein graft failure.

Objective To assess the efficacy and safety of pretreating vein grafts with edifoligide for patients undergoing CABG surgery.

Design, Setting, and Participants A phase 3 randomized, double-blind, placebo-controlled trial of 3014 patients undergoing primary CABG surgery with at least 2 planned saphenous vein grafts and without concomitant valve surgery, who were enrolled between August 2002 and October 2003 at 107 US sites.

Intervention Vein grafts were treated ex vivo with either edifoligide or placebo in a pressure-mediated delivery system. The first 2400 patients enrolled were scheduled for 12- to 18-month follow-up angiography.

Main Outcome Measures The primary efficacy end point was angiographic vein graft failure (>75% vein graft stenosis) occurring 12 to 18 months after CABG surgery. Other end points included other angiographic variables, adverse events through 30 days, and major adverse cardiac events.

Results A total of 1920 patients (80%) either died (n=91) or underwent follow-up angiography (n=1829). Edifoligide had no effect on the primary end point of per patient vein graft failure (436 [45.2%] of 965 patients in the edifoligide group vs 442 [46.3%] of 955 patients in the placebo group; odds ratio, 0.96 [95% confidence interval (CI), 0.80-1.14]; P=.66), on any secondary angiographic end point, or on the incidence of major adverse cardiac events at 1 year (101 [6.7%] of 1508 patients in the edifoligide group vs 121 [8.1%] of 1506 patients in the placebo group; hazard ratio, 0.83 [95% CI, 0.64-1.08]; P=.16).

Conclusions Failure of at least 1 vein graft is quite common within 12 to 18 months after CABG surgery. Edifoligide is no more effective than placebo in preventing these events. Longer-term follow-up and additional research are needed to determine whether edifoligide has delayed beneficial effects, to understand the mechanisms and clinical consequences of vein graft failure, and to improve the durability of CABG surgery.

Clinical Trial Registration ClinicalTrials.gov Identifier: NCT00042081.

JAMA. 2005;294:2446-2454
www.jama.com

A novel approach to inhibiting neointimal hyperplasia involves the double-stranded oligonucleotide decoy to E2F, edifoligide (Corgentech Inc, South San Francisco, CA). The Authors/Writing Group and Investigators of PREVENT IV are listed at the end of this article.

Corresponding Author: John H. Alexander, MD, MS, Box 3300, Duke University Medical Center, Duke Clinical Research Institute, Durham, NC 27715 (john.h.alexander@duke.edu).

*The Authors/Writing Group and Investigators of PREVENT IV were listed at the end of this article.

©2005 American Medical Association. All rights reserved.
When administered ex vivo, edifoligide inhibited neointimal hyperplasia in a rabbit bypass model. Edifoligide treatment results were favorable in preventing vein graft neointimal hyperplasia in 2 small trials of patients undergoing peripheral arterial bypass surgery (Project of Ex-vivo Vein Graft Engineering via Transfection [PREVENT] I; N=41) and CABG surgery (PREVENT II; N=200).

The objectives of the PREVENT IV trial were to assess (1) the efficacy of edifoligide in preventing angiographic vein graft failure 12 to 18 months after CABG surgery; (2) the safety of edifoligide; and (3) the effect of edifoligide on the occurrence of major adverse cardiac events following CABG surgery.

METHODS

Design

The PREVENT IV trial, the design of which has been described in detail, was a phase 3, multicenter, randomized, double-blind, placebo-controlled trial in which autologous vein grafts were treated ex vivo with edifoligide for patients undergoing primary CABG surgery. PREVENT IV was designed and led by an academic steering committee, which included representatives of the Society of Thoracic Surgeons, and was coordinated by the Duke Clinical Research Institute (Durham, NC).

Patient Population

A total of 3014 patients were enrolled between August 2002 and October 2003 at 107 centers across the United States. The majority of sites were identified from those participating in the Society of Thoracic Surgeons’ National Cardiac Database. Patients aged 18 to 80 years, undergoing a first, isolated CABG surgery for atherosclerotic coronary artery disease with at least 2 planned vein grafts, were eligible. For the purpose of eligibility, grafts with multiple distal anastomoses were counted as single grafts. The first 2400 patients enrolled were assigned to an angiographic cohort and scheduled to return for angiography 12 to 18 months after surgery. Major exclusion criteria included prior cardiac surgery or planned concomitant valve surgery (because of the increased early mortality associated with these procedures), vasculitis or another nonatherosclerotic cause of coronary artery disease, hypercoagulable state, involvement in another investigational drug or device study within 30 days, or a comorbid illness that would make 5-year survival unlikely. Institutional review board approval was obtained at all sites and all patients gave written informed consent prior to participation.

Study Drug Administration

Sites used blinded drug kits in a randomized, predetermined numerical order using an onsite kit administration log. Randomization was stratified by site with a block size of 4. Patients were considered randomized only after a treated segment of vein graft was implanted. Those who did not have a treated segment of vein graft implanted were not included in the trial. Randomized patients were registered through a central interactive voice response system as soon as possible following surgery. Each patient’s harvested vein was treated ex vivo with either edifoligide, formulated as double-stranded oligonucleotide at a concentration of 0.38 mg/mL (40 µmol/L), or identical appearing buffered normal saline placebo. Patients who required a supplemental drug kit were assigned the kit through an interactive voice response system to ensure that it matched the patient’s initial kit. Study drug was administered using a pressure-mediated delivery system (Corgentech Inc, South San Francisco, Calif), which was a trough inserted in a fluorinated ethylene polypropylene tube attached to a pressure syringe. Each vein was harvested in the usual manner, placed on the trough, and inserted into the tube, which was then filled with either edifoligide or placebo solution. Six pounds per square inch of nondistending pressure was applied to the tube for 10 minutes. Each treated vein was then removed from the device, divided into appropriate lengths for grafting, and grafted into the patient using standard surgical techniques. Other than administration of study drug, all graft handling, surgical, and medical interventions were left to the discretion of the operating surgeon.

Outcome Measures

The primary end point was death or vein graft stenosis of 75% or greater in at least 1 vein graft as assessed by quantitative coronary angiography 12 to 18 months following surgery. Patients in the angiographic cohort who underwent angiography for clinical reasons prior to 12 months and who met the primary end point were not required to return for additional protocol angiography.

Secondary angiographic end points included (1) per patient incidence of vein graft occlusion, (2) per graft incidence of vein graft failure (57.5% stenosis) and vein graft occlusion, (3) per graft incidence of vein graft occlusion, and (4) mean vein graft lumen diameter (a continuous measure of vein graft disease). All angiograms were interpreted at the PERFUSE Angiographic Core Laboratory (Boston, Mass), using standard quantitative coronary angiographic techniques.

Adverse events were recorded through day 30. Secondary end points included major adverse cardiac events and the composite of death, MI, or repeat revascularization with vein graft failure. Perioperative MI was not included in the end point of major adverse cardiac events. Patients were contacted via mail or telephone at 6 and 9 months and at 1 year following CABG surgery. Annual follow-up is ongoing and planned at 2, 3, 4, and 5 years after CABG surgery. For those who reported a possible MI or revascularization procedure, additional medical records were obtained from their hospitals.

All suspected MIs and revascularization procedures were adjudicated by a blinded, independent clinical events committee using prespecified criteria. Perioperative MI was defined as a creatine kinase-MB (CK-MB) fraction of greater than 10 times the upper limit of normal (ULN) or greater than 5 times
PREVENTION OF VEIN GRAFT FAILURE FOLLOWING CABG SURGERY

Figure 1. PREVENT IV Trial Design and Patient Disposition

- 3014 Patients Randomized
- 1508 Assigned to Edifoligide (E2F Transcription Factor Decoy) Group
- 1197 Assigned to Angiographic Cohort
- 311 Assigned to Nonangiographic Cohort
- 42 Died
- 3 Lost to Follow-up
- 2 Withdrew Consent
- 948 Had Follow-up for Major Adverse Cardiac Events at 1 y
- 1506 Assigned to Placebo Group
- 1203 Assigned to Angiographic Cohort
- 903 Assigned to Nonangiographic Cohort
- 35 Early Angiography With End Point
- 871 Protocol Angiography
- 49 Died <18 mo Without Angiography
- 248 Excluded
- 157 Refused Angiography
- 166 Refused Angiography
- 61 Other
- 14 Renal Insufficiency
- 1503 Had Follow-up for Major Adverse Cardiac Events at 1 y
- 1494 Had Follow-up for Major Adverse Cardiac Events at 1 y
- 955 in Efficacy Population
- 760 Without Angiography
- 495 Protocol Angiography
- 502 Early Angiography With End Point
- 965 in Efficacy Population
- 960 in Efficacy Population
- 950 in Efficacy Population
- 940 in Efficacy Population
- 930 in Efficacy Population
- 920 in Efficacy Population
- 910 in Efficacy Population
- 900 in Efficacy Population
- 890 in Efficacy Population
- 880 in Efficacy Population
- 870 in Efficacy Population
- 860 in Efficacy Population
- 850 in Efficacy Population
- 840 in Efficacy Population
- 830 in Efficacy Population
- 820 in Efficacy Population
- 810 in Efficacy Population
- 800 in Efficacy Population
- 790 in Efficacy Population
- 780 in Efficacy Population
- 770 in Efficacy Population
- 760 in Efficacy Population
- 750 in Efficacy Population
- 740 in Efficacy Population
- 730 in Efficacy Population
- 720 in Efficacy Population
- 710 in Efficacy Population
- 700 in Efficacy Population
- 690 in Efficacy Population
- 680 in Efficacy Population
- 670 in Efficacy Population
- 660 in Efficacy Population
- 650 in Efficacy Population
- 640 in Efficacy Population
- 630 in Efficacy Population
- 620 in Efficacy Population
- 610 in Efficacy Population
- 600 in Efficacy Population
- 590 in Efficacy Population
- 580 in Efficacy Population
- 570 in Efficacy Population
- 560 in Efficacy Population
- 550 in Efficacy Population
- 540 in Efficacy Population
- 530 in Efficacy Population
- 520 in Efficacy Population
- 510 in Efficacy Population
- 500 in Efficacy Population
- 490 in Efficacy Population
- 480 in Efficacy Population
- 470 in Efficacy Population
- 460 in Efficacy Population
- 450 in Efficacy Population
- 440 in Efficacy Population
- 430 in Efficacy Population
- 420 in Efficacy Population
- 410 in Efficacy Population
- 400 in Efficacy Population
- 390 in Efficacy Population
- 380 in Efficacy Population
- 370 in Efficacy Population
- 360 in Efficacy Population
- 350 in Efficacy Population
- 340 in Efficacy Population
- 330 in Efficacy Population
- 320 in Efficacy Population
- 310 in Efficacy Population
- 300 in Efficacy Population
- 290 in Efficacy Population
- 280 in Efficacy Population
- 270 in Efficacy Population
- 260 in Efficacy Population
- 250 in Efficacy Population
- 240 in Efficacy Population
- 230 in Efficacy Population
- 220 in Efficacy Population
- 210 in Efficacy Population
- 200 in Efficacy Population
- 190 in Efficacy Population
- 180 in Efficacy Population
- 170 in Efficacy Population
- 160 in Efficacy Population
- 150 in Efficacy Population
- 140 in Efficacy Population
- 130 in Efficacy Population
- 120 in Efficacy Population
- 110 in Efficacy Population
- 100 in Efficacy Population
- 90 in Efficacy Population
- 80 in Efficacy Population
- 70 in Efficacy Population
- 60 in Efficacy Population
- 50 in Efficacy Population
- 40 in Efficacy Population
- 30 in Efficacy Population
- 20 in Efficacy Population
- 10 in Efficacy Population
- 0 in Efficacy Population

Asterisk indicates that these patients were among the first 2400 enrolled patients. PREVENT indicates Project Ex-vivo Vein Graft Engineering via Transfection.

The ULN with new Q waves longer than 30 ms in 2 contiguous leads or, if postoperative CK-MB samples were not available, new Q waves longer than 30 ms in 2 contiguous leads. Perioperative MI was diagnosed if CK-MB was elevated within 24 hours of surgery when there was not an interval clinical event and when the elevation was not attributable to a preoperative MI.

Postoperative MI was defined as either spontaneous (CK-MB > 2 times the ULN or new Q waves > 30 ms in 2 contiguous leads), after percutaneous coronary intervention (CK-MB > 3 times the ULN or new Q waves > 30 ms in 2 contiguous leads), or after CABG surgery (CK-MB > 10 times the ULN or >5 times the ULN with new Q waves > 30 ms in 2 contiguous leads). For patients for whom CK-MB samples and electrocardiograms were not available, MI could be defined by the presence of “myocardial infarction,” “heart attack,” or similar term in the medical record documenting that an MI had occurred after the initial CABG procedure. Revascularization with vein graft failure was defined as any percutaneous or surgical revascularization procedure and vein graft stenosis of 75% or greater in at least 1 vein graft.

Sample Size and Analysis

We estimated that failure of 1 or more vein grafts would occur in 25% of patients in the placebo group by 12 to 18 months after enrollment.6,7 A total sample size of 1920 (960 patients per treatment group) had 91% power to detect a 25% reduction in vein graft failure using a 2-sided test for the differences in treatment of least-squares means from a mixed-linear model.

All analyses were performed independently by the Duke Clinical Research Institute. The primary and secondary end points of occurrence in at least 1 treated vein graft were assessed using the Cochran-Mantel-Haenszel χ^2 test, stratified on the number of treated vein grafts implanted.29 Because patients were randomized at the time of vein graft implantation, patients were analyzed as initially treated. Patients (n = 3) who received a supplemental kit of a type different from their initial kit were analyzed as initially treated. For the secondary end points of vein graft stenosis of 75% or greater and occlusion on a per graft basis, graft failure rates were adjusted for intrapatient correlation using general estimating equation techniques.30-32 Mean graft lumen diameter was assessed using a t test for the differences in treatment of least-squares means from a mixed-linear model.

Clinical end points at 1 year were assessed with the log-rank test.33,34 Cumulative event rates were calculated by the Kaplan-Meier method, with time to the first event as the outcome variable.35

Clinical characteristics were summarized in terms of frequencies and percentages for categorical variables and by median and 25th and 75th percentiles for continuous variables. Race was collected in 6 predefined categories (white [caucasian], Asian, Native American, black, Hispanic, or other) as recorded in the patient’s medical record. Treatment group differences were assessed using the χ^2 test for categorical variables and the Wilcoxon rank sum test for continuous variables. All tests of significance were 2-tailed; a P value of less than .05 was considered significant. Analyses were performed using SAS software version 8.2 (SAS Institute Inc, Cary, NC).

RESULTS

Baseline Characteristics

A total of 3014 patients were enrolled between August 2002 and October 2003 at 107 centers across the United States (FIGURE 1). Of 113 sites that received study drug kits, more than 95% enrolled 1 or more patients. Baseline characteristics of patients enrolled in
PREVENT IV appear in Table 1. The median age was 64 years (interquartile range [IQR], 56-71 years), 2385 (79%) were male, 1137 (38%) had diabetes, and the median left ventricular ejection fraction was 50% (IQR, 40%-60%). There were no significant differences in baseline characteristics between patients assigned to edifoligide and to placebo.

Among the 2400 patients enrolled in the angiography cohort, those who survived and underwent follow-up angiography were generally less sick than those who survived and did not undergo angiographic follow-up. The primary reason patients did not return for angiographic follow-up was patient refusal (Figure 1). Compared with patients who did not undergo angiographic follow-up, patients who underwent angiographic follow-up were younger (63 years vs 66 years; P <.001); more likely to be male (1434/1764 [81%] vs 345/480 [72%]; P <.001); weighed more (89 kg vs 85 kg; P = .001); more had hypercholesterolemia (1360/1764 [77%] vs 334/480 [70%]; P = .001); and less had hypertension (1288/1764 [73%] vs 379/480 [79%]; P = .008), chronic lung disease (238/1764 [14%] vs 90/480 [19%]; P = .004), renal failure (22/1764 [1%] vs 19/480 [4%]; P <.001), congestive heart failure (119/1764 [7%] vs 73/480 [15%]; P <.001), peripheral vascular disease (195/1764 [11%] vs 75/480 [16%]; P = .006), and cerebrovascular disease (170/1764 [10%] vs 85/480 [18%]; P <.001).

Surgery and Hospital Course

Surgical and in-hospital care data appear in Table 2. More than 58% of patients had endoscopic vein graft harvesting and there were a median of 2 (IQR, 2-3) vein grafts placed per patient; approximately 92% of patients had left ITA grafts, slightly more among those who were assigned to placebo; and 21% of patients had surgery without the support of cardiopulmonary bypass. The median duration of surgery was 231 minutes, with a median duration of 100 minutes for cardiopulmonary bypass. Postoperatively, patients were ventilated for 7.5 hours, remained in the intensive care unit for 26 hours, and had a postoperative hospital length of stay of 6 days. More than 90% of patients were taking aspirin at discharge, with more than 20% also taking a thienopyridine. In addition to differences in baseline characteristics, patients in the angiographic cohort were ventilated postoperatively for less time (7 hours vs 9 hours; P <.001) and had a shorter postoperative length of stay (6 days vs 7 days; P <.001) than patients who were not in the angiographic cohort.

Angiographic Results

Of the 2400 patients in the angiography cohort, primary end point data were available for 1920 (80.0%) (Figure 1). Of these patients, 65 (3.4%) had early, clinically driven angiography with a result that met the primary end point; 1764 (91.9%) had protocol angiography; and 91 (4.7%) died prior to the 18-month angiographic follow-up. The majority of angiographic follow-up was performed between 12 and 14 months after surgery (Figure 2).

Angiographic results are summarized in Table 3. The primary end point occurred in 436 (45.2%) of 965 patients assigned to edifoligide and 442 (46.3%) of 955 patients assigned to placebo (odds ratio, 0.96; 95% confidence interval, 0.80-1.14; P = .66). The majority of graft failure was due to graft

Table 1. Baseline Characteristics of PREVENT IV Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Edifoligide (n = 1508)</th>
<th>Placebo (n = 1506)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR), y</td>
<td>64 (56-71)</td>
<td>64 (56-71)</td>
<td>.90</td>
</tr>
<tr>
<td>Men</td>
<td>1176 (78.0)</td>
<td>1209 (80.3)</td>
<td>.12</td>
</tr>
<tr>
<td>White race</td>
<td>1366 (90.6)</td>
<td>1374 (91.2)</td>
<td>.53</td>
</tr>
<tr>
<td>Weight, median (IQR), kg</td>
<td>88 (76-100)</td>
<td>88 (77-100)</td>
<td>.77</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1126 (74.7)</td>
<td>1137 (75.5)</td>
<td>.60</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>1149 (76.2)</td>
<td>1150 (76.4)</td>
<td>.94</td>
</tr>
<tr>
<td>Diabetes</td>
<td>563 (37.3)</td>
<td>576 (38.2)</td>
<td>.61</td>
</tr>
<tr>
<td>Smoking (current)</td>
<td>336 (22.3)</td>
<td>354 (23.5)</td>
<td>.63</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>249 (16.5)</td>
<td>226 (15.0)</td>
<td>.26</td>
</tr>
<tr>
<td>Renal failure</td>
<td>104 (6.9)</td>
<td>108 (7.2)</td>
<td>.77</td>
</tr>
<tr>
<td>Renal failure</td>
<td>35 (2.3)</td>
<td>31 (2.1)</td>
<td>.71</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>623 (41.3)</td>
<td>650 (43.2)</td>
<td>.30</td>
</tr>
<tr>
<td>Within 3 mo</td>
<td>286 (19.0)</td>
<td>323 (21.4)</td>
<td>.09</td>
</tr>
<tr>
<td>Percutaneous coronary intervention</td>
<td>404 (26.8)</td>
<td>376 (25.0)</td>
<td>.25</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>152 (10.1)</td>
<td>140 (9.3)</td>
<td>.47</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>179 (11.9)</td>
<td>190 (12.6)</td>
<td>.53</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>182 (12.1)</td>
<td>200 (13.3)</td>
<td>.32</td>
</tr>
<tr>
<td>Preoperative NYHA classification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>585 (38.8)</td>
<td>613 (40.7)</td>
<td>.72</td>
</tr>
<tr>
<td>II</td>
<td>508 (33.7)</td>
<td>486 (32.3)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>272 (18.0)</td>
<td>265 (17.6)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>130 (8.6)</td>
<td>124 (8.2)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>13 (0.9)</td>
<td>18 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Left ventricular ejection fraction, median (IQR), %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of diseased (>=75% vein graft stenosis) vessels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>297 (19.7)</td>
<td>296 (19.7)</td>
<td>>.99</td>
</tr>
<tr>
<td>2</td>
<td>585 (38.8)</td>
<td>587 (39.0)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>548 (36.4)</td>
<td>552 (36.7)</td>
<td></td>
</tr>
<tr>
<td>Left main</td>
<td>406 (26.9)</td>
<td>387 (25.7)</td>
<td></td>
</tr>
<tr>
<td>Left main or 3</td>
<td>650 (43.1)</td>
<td>648 (43.0)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; NYHA, New York Heart Association; PREVENT, Project of Ex-vivo Vein Graft Engineering via Transfection.

*Values are expressed as number (percentage) unless otherwise indicated.
occlusion, which occurred among a similar proportion of patients (41.8% of edifoligide group vs 41.7% of placebo group; \(P = .97 \)). On a per graft basis, the rates of vein graft failure (28.5% vs 29.7%; \(P = .44 \)) and vein graft occlusion (26.1% vs 26.5%; \(P = .83 \)) were also similar among patients assigned to edifoligide and placebo, respectively. Finally, the continuous measure of mean vein graft diameter in nonoccluded grafts was similar among patients assigned to edifoligide and placebo (2.92 mm vs 2.97 mm; \(P = .17 \)).

At 1 year, among the 1593 patients who had thoracic artery angiography, ITA grafts had a lower failure rate than vein grafts (8% vs 29%). Although higher event rates were seen among women, patients who were not White, patients with diabetes, patients not taking aspirin or statins at 30 days, and those taking thienopyridine at 30 days, there was no meaningful difference in the effect of edifoligide on vein graft failure among any subgroup (FIGURE 3).

Clinical Events
Clinical follow-up for major adverse cardiac events is complete through 1 year and available for 99.4% of patients (Figure 1). Clinical events are summarized in TABLE 4. Mortality was similar among patients assigned to edifoligide and placebo at 30 days (1.3% vs 1.1%) and at 1 year (3.5% vs 2.9%). The composite of death, MI, or revascularization with vein graft failure occurred in 101 (6.7%) of patients assigned to edifoligide and 121 (8.1%) of patients assigned to placebo (\(P = .16 \)). From the first few weeks after CABG surgery, the risk of a major adverse cardiac events event was approximately constant through 1 year (FIGURE 4). With all revascularization procedures included, the total number of events increased from 222 to 251, with a proportional increase among patients assigned to edifoligide and placebo. Major adverse cardiac events were more frequent among patients subsequently found to have vein graft failure than among patients without vein graft failure (TABLE 5).

Table 2. Surgery and Hospital Care*

<table>
<thead>
<tr>
<th>Event</th>
<th>Edifoligide (n = 1508)</th>
<th>Placebo (n = 1506)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urgent surgery†</td>
<td>727 (48.2)</td>
<td>734 (48.7)</td>
<td>.79</td>
</tr>
<tr>
<td>Endoscopic saphenous vein harvest</td>
<td>873 (57.9)</td>
<td>883 (58.6)</td>
<td>.68</td>
</tr>
<tr>
<td>Internal thoracic artery graft</td>
<td>1371 (90.9)</td>
<td>1412 (93.8)</td>
<td><.01</td>
</tr>
<tr>
<td>Surgery duration, median (IQR), min</td>
<td>231 (194-270)</td>
<td>230 (192-273)</td>
<td>.83</td>
</tr>
<tr>
<td>Cardiopulmonary bypass</td>
<td>1187 (78.7)</td>
<td>1190 (79.0)</td>
<td>.84</td>
</tr>
<tr>
<td>Duration, median (IQR), min</td>
<td>99 (80-121)</td>
<td>100 (79-124)</td>
<td>.20</td>
</tr>
<tr>
<td>Postoperative duration, median (IQR)</td>
<td>7.5 (5.0-13.5)</td>
<td>7.0 (4.5-14.0)</td>
<td>.69</td>
</tr>
<tr>
<td>Intensive care unit stay, h</td>
<td>26 (22-47)</td>
<td>26 (22-48)</td>
<td>.74</td>
</tr>
<tr>
<td>Hospital stay, d</td>
<td>6 (5-8)</td>
<td>6 (5-8)</td>
<td>.21</td>
</tr>
</tbody>
</table>

Medications continued at 30 d, No./total (%)

<table>
<thead>
<tr>
<th>Medication</th>
<th>Edifoligide</th>
<th>Placebo</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>1380/1495 (91.0)</td>
<td>1345/1494 (90.0)</td>
<td>.38</td>
</tr>
<tr>
<td>Thienopyridine</td>
<td>310/1498 (20.7)</td>
<td>344/1496 (23.0)</td>
<td>.13</td>
</tr>
<tr>
<td>ACE inhibitor</td>
<td>522/1496 (34.9)</td>
<td>547/1497 (36.6)</td>
<td>.34</td>
</tr>
<tr>
<td>Angiotensin II receptor blocker</td>
<td>100/1493 (6.7)</td>
<td>101/1485 (6.8)</td>
<td>.94</td>
</tr>
<tr>
<td>(\beta)-Blocker</td>
<td>1186/1496 (79.3)</td>
<td>1168/1196 (78.1)</td>
<td>.42</td>
</tr>
<tr>
<td>HMG-CoA reductase inhibitor</td>
<td>1096/1495 (73.3)</td>
<td>1083/1496 (72.4)</td>
<td>.39</td>
</tr>
</tbody>
</table>

Abbreviations: ACE, angiotensin-converting enzyme; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; IQR, interquartile range.
*Values are expressed as number (percentage) unless otherwise indicated.
†Indicates during index hospitalization.

Figure 2. Kaplan-Meier Curves for Angiographic Follow-up

Table 3. Angiographic Results*

<table>
<thead>
<tr>
<th>Event</th>
<th>No./Total (%)</th>
<th>Edifoligide</th>
<th>Placebo</th>
<th>OR (95% CI)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vein graft failure</td>
<td>436/965 (45.2)</td>
<td>442/955 (46.3)</td>
<td>0.96 (0.80-1.14)</td>
<td>.66</td>
<td></td>
</tr>
<tr>
<td>Vein graft occlusion</td>
<td>403/964 (41.8)</td>
<td>397/951 (41.7)</td>
<td>1.00 (0.84-1.20)</td>
<td>.97</td>
<td></td>
</tr>
<tr>
<td>Per vein graft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vein graft failure</td>
<td>650/2303 (28.5)</td>
<td>671/2254 (29.7)</td>
<td>0.94 (0.80-1.10)</td>
<td>.44</td>
<td></td>
</tr>
<tr>
<td>Vein graft occlusion</td>
<td>601/2295 (26.1)</td>
<td>597/2242 (26.5)</td>
<td>0.98 (0.83-1.15)</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>Internal thoracic artery graft</td>
<td>69/809 (8.5)</td>
<td>60/784 (7.6)</td>
<td>1.12 (0.78-1.61)</td>
<td>.53</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; OR, odds ratio.
*Data were available for 1920 of the 2400 angiographic cohort patients. Per vein graft percentages are adjusted for intrapatient correlation.
Edifoligide was well tolerated. Major adverse events appear in Table 6. There was no difference in the rate of adverse events among patients assigned to edifoligide or placebo. More than 25% of patients had postoperative atrial fibrillation, 9.8% had MI during CABG surgery, 3.3% had new or worsening renal failure, 2.5% had bleeding that required reoperation, and 1.5% of patients had a postoperative stroke. The rate of perioperative MI in CABG surgery was higher among patients with vein graft failure than among patients with vein graft failure (Table 5).

COMMENT

In PREVENT IV, treatment with edifoligide had no effect on the primary end point of vein graft failure 12 months after CABG surgery. There was also no effect seen on any secondary angiographic end point. Even mean lumen diameter by quantitative coronary angiography, a continuous and sensitive angiographic measure of graft neointimal hyperplasia, failed to demonstrate an effect of edifoligide. With the observed rate of vein graft failure, PREVENT IV was well powered to detect a beneficial effect of edifoligide on angiographic patency at 12 to 18 months. Although not measured directly in PREVENT IV, based on prior preclinical work, the treated vein should have had adequate uptake of edifoligide. These negative results are consistent with the main results of the PREVENT III trial, which also failed to demonstrate a beneficial effect of edifoligide on vein graft patency in peripheral arterial bypass surgery. Given negative results in 2 large, adequately powered phase 3 trials, the early promising results with edifoligide in PREVENT II were most likely due to chance. Longer-term follow-up, however, is warranted to define whether treatment with edifoligide results in long-term clinical benefit despite an absence of effect on 12-month angiographic outcomes.

Table 4. Clinical Events

<table>
<thead>
<tr>
<th>Type of Event</th>
<th>No. (Kaplan-Meier Rate at 1 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Edifoligide (n = 1508)</td>
</tr>
<tr>
<td>Death</td>
<td>52 (3.5)</td>
</tr>
<tr>
<td>Death or MI*</td>
<td>63 (4.2)</td>
</tr>
<tr>
<td>Death, MI* or revascularization</td>
<td>115 (7.6)</td>
</tr>
<tr>
<td>Major adverse cardiac events†</td>
<td>101 (6.7)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; HR, hazard ratio; MI, myocardial infarction.

*Not including perioperative MI in coronary artery bypass graft surgery.
†Death, nonfatal MI, or revascularization with vein graft failure.

©2005 American Medical Association. All rights reserved.

(Reprinted) JAMA, November 16, 2005—Vol 294, No. 19 2451
The rate of vein graft failure in PREVENT IV is generally higher than that reported by other studies in the literature. Comparison between published studies is challenging because of different patient populations with more or less aggressive revascularization; differing completeness, timing, and techniques of angiographic follow-up; variable reporting of both per graft and per patient graft failure rates; the retrospective observational nature of many published studies; and the increasing risk profile of patients undergoing CABG surgery with more extensive and diffuse anatomic disease.39 Alternatively, the pressure-mediated delivery system or other vein graft handling techniques that were used in both edifoligide- and placebo-treated patients could theoretically have contributed to higher rates of vein graft failure. Based on the similarity of baseline characteristics with an age-matched population from the Society of Thoracic Surgeons’ National Cardiac Database, however, it is most likely that PREVENT IV is representative of true, real-world contemporary rates of vein graft failure.23

In PREVENT IV, there was an association between angiographic vein graft failure and clinically important major adverse cardiac events. Although vein graft failure was measured after the occurrence of these clinical events, this association suggests that a substantial proportion of vein graft failure may occur early in the perioperative period and that vein graft failure is clinically important, at least in some cases. This early vein graft failure may be due to technical or thrombotic factors, thus masking any potential effect of edifoligide. Interestingly, more than half of patients with vein graft failure did not have major adverse cardiac events. Some vein grafts may be clinically unimportant and supply either small areas of the myocardium, areas with significant competitive flow from native coronary arteries (almost 20% of patients in PREVENT IV had only 1 major epicardial artery with ≥75% stenosis), or areas with diffuse disease but extensive native collaterals. Alternatively, these graft failures may result in other clinically important consequences, such as angina or heart failure, that are not reflected in our end point of major adverse cardiac events. The ongoing follow-up of PREVENT IV patients will allow better definition of the long-term clinical consequences of angiographic vein graft failure.

As observed in PREVENT IV, the ITA grafts have better long-term patency than vein grafts. Use of ITA grafts also results in improved outcomes and is now a recognized quality indicator in CABG surgery. Because most patients undergoing CABG surgery require multiple grafts, however, saphenous vein is likely to remain the most common conduit in CABG surgery. Current therapies to prevent vein graft failure after CABG surgery are limited to antiplatelet therapy with aspirin, angiotensin-converting enzyme inhibitors, and lipid-lowering therapy.41-44 Although proven effective, these interventions are not used in all eligible patients following CABG surgery. Other promising, although yet unproven, antiproliferative interventions are in various early stages of development.20,21,45

Although not effective in PREVENT IV, therapeutic inhibition of the E2F transcription factors may still be a promising approach to prevent vein graft fail-
ure. Since the initial development of edifoligide, the knowledge base regarding the E2F family of transcription factors has grown substantially and 8 unique E2F transcription factors now have been identified. It is now recognized that some are active in promoting neointimal hyperplasia while others serve to inhibit neointimal hyperplasia (B. A. Sul- lenger, PhD, Center for Translational Research, Department of Surgery, Duke University Medical Center, written communication, July 2005). Given this, it is not surprising that edifoligide, which serves as a decoy for the entire E2F family, does not have a detectable effect on neointimal hyperplasia.

Despite negative results, PREVENT IV provided a number of noteworthy lessons. First, an unusual approach to drug delivery was investigated in PREVENT IV; edifoligide was administered directly to the harvested vein graft prior to implantation. This type of specific, targeted application of a therapy to a specific tissue or organ may limit systemic toxicity and be a future direction of surgical intervention.77 Second, PREVENT IV includes and was powered to both a surrogate end point (angiographic vein graft failure) and a long-term clinical confirmatory end point (major adverse cardiac events). For important interventions believed to have long-term effects, this approach may allow beneficial therapies to be adopted earlier based on surrogate effects yet still ensure rigorous ultimate proof of safety and efficacy.80 Finally, the long-term clinical follow-up in PREVENT IV is being conducted centrally, from a single center, rather than by the 107 sites that enrolled patients and conducted angiographic follow-up and should result in considerable resource saving and perhaps more complete and systematic follow-up. Failure of at least 1 vein graft is quite common within 12 to 18 months after CABG surgery. Although safe and well tolerated, inhibition of E2F with edifoligide is no more effective than placebo in preventing these events. Longer-term follow-up and additional research are needed to explain the mechanism and clinical consequences of vein graft failure and to improve the durability of CABG surgery.

Authors/Writing Group of PREVENT IV: John H. Alexander, Duke University Medical Center, Durham, NC; Gail Hailey, Duke Clinical Research Institute, Durham, NC; Robert A. Harrington, Duke University Medical Center, Durham, NC; Eric D. Peterson, Mayo Clinic, Rochester, MN; and Nicholas T. Kouchoukos, Missouri Baptist Medical Center, St Louis.

Author Contributions: Dr Alexander had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Alexander, Harrington, Ferguson, Lorenz, Mack, Gennevois, Califf.

Acquisition of data: Alexander, Harrington, Ferguson, Lorenz, Gennevois, Califf.

Analysis and interpretation of data: Alexander, Hailey, Harrington, Peterson, Lorenz, Goyal, Gibson, Mack, Gennevois, Califf, Kouchoukos.

Drafting of the manuscript: Alexander, Hailey, Ferguson, Gibson.

Critical revision of the manuscript for important intellectual content: Alexander, Harrington, Peterson, Ferguson, Lorenz, Goyal, Mack, Gennevois, Califf, Kouchoukos.

Statistical analysis: Hailey, Lorenz.

Obtained funding: Alexander, Harrington, Peterson, Ferguson, Lorenz, Gennevois, Califf.

Administrative, technical, or material support: Alexander, Harrington, Peterson, Gibson, Califf, Racine.

Funding/support: Alexander, Harrington, Ferguson, Lorenz, Mack, Califf.

Financial Disclosures: Drs Alexander, Harrington, Peterson, Gibson, and Califf have received research funding from Corgentech Inc; Gennevois is an employee of Corgentech. Dr Lorenz is a former employee of Corgentech and retains significant equity ownership.

Role of the Sponsor: Representatives of Corgentech Inc served on the steering committee and were involved in the design and conduct of the study and in the management of data collection. They reviewed and commented on the manuscript; however, they were not directly responsible for the analysis or interpretation of the data presented in the manuscript, the preparation of the manuscript, or the final approval of the manuscript.

Investigators of PREVENT IV: F. S. Malik, MD, Charleston Area Medical Center; N. Baumgartner, MD, Michigan Cardiovascular Institute; D. Duncan, MD, Forsyth Medical Center; B. Mindich, MD, the Valley Hospital; M. J. Mack, MD, Medical City Dallas Hospital; S. Roberts, MD, Genesis Heart Institute; T. Knobloch, MD, PhD, Minneapolis Heart Institute; A. Zacharias, MD, Saint Vincent Mercy Medical Center; T. E. Themann, MD, St Luke’s Hospital; C. D. Randelman, Jr, MD, Baptist Medical Center, Montclair; N. Kouchoukos, MD, Missouri Baptist Hospital; J. Todd, MD, Peninsula Regional Medical Center; M. Mallias, MD, Holmes Regional Medical Center; P. Wickstrom, MD, Saint Mary’s/Duluth Clinic Medical Center; N. Kouchoukos, MD, Atlanticus Hospital/Canton Cardiovascular; K. Accola, MD, Florida Hospital; J. C. Laschinguer, MD, Saint Joseph’s Medical Center; M. Platt, MD, Presbyterian Hospital of Dallas; R. Roussel, MD, South Texas Cardiovascular & Thoracic Institute; B. Sun, MD, Ohio State University Medical Center; C. Miliano, MD, Duke University Medical Center; K. R. Petro, MD, Washington Hospital Center; L. Suarez, MD, Baptist Cardiology Associates; S. C. Gangahar, MD, Nebraska Medical Center; R. Dowling, MD, Jewish Hospital-Louisville; A. Schwartz, MD, Shawnee Mission Medical Center; J. Johnskoski, MD, Wauaus Hospital; A. Kiser, MD, First Health Moore Regional Hospital; M. Sand, MD, Orlando Heart Center; Z. Davis, MD, Edward Hospital; J. Schwartz, MD, Loyola University Medical Center; T. Alcuff, MD, Denton Regional Medical Center; G. Roth, MD, Ingham Regional Medical Center; K. Allen, MD, the Heart Center of Indiana; T. Militano, MD, Washington Adventist Hospital; C. J. Magovern, MD, Morristown Memorial Hospital; E. Zech, MD, Saint Joseph Hospital; M. Beggs, MD, Sarasota Memorial Hospital; O. M. Lattouf, MD, Emory University Hospital; P. Cho, MD, Sinai Hospital of Bal-timore; M. W. Gerdisch, MD, Central DuPage Hospital; A. Yap, MD, Seton Medical Center; J. L. Harlan, MD, University Center East; J. M. Peterson, MD, Regional Medical Center; W. Pae, Jr, MD, Hershey Medical Center; S. F. Aranik, MD, Brigham and Women’s Hospital; M. McDonald, MD, St Luke’s Medical Center; Midwest Heart Surgery; J. Michael DiMaggio, MD, Akron General Medical Center; R. S. Kramer, MD, Maine Medical Center; E. Zias, MD, Westchester Medical Center; J. Michael DiMaio, MD, UT Southwestern Medical Center of Dallas; J. H. Leverett, MD, University of Utah Hospital; D. A. DeBoer, MD, North- ern Illinois Cardiovascular & Thoracic; P. Horner, MD, Saint Joseph Medical Center; R. Hooker, Jr, MD, West Michigan Cardiovascular Surgeons; J. Richardson, Jr, MD, Brookwood Medical Center; N. Zama, MD, Southern Illinois Uni- versity School of Medicine; T. Dorheim, MD, Ne- braska Methodist Hospital; R. Hagberg, MD, Sentara Norfolk General Hospital; P. E. Seifert, MD, Wauke- sha Memorial Hospital; C. Wright, MD, Greenville Me- morial Hospital; J. Frederiksen, MD, Northwestern Uni- versity; J. Michael Smith, MD, Good Samaritan Hospital; M. A. Anderson, MD, Robert Wood Johnson Medical School; C. Dyke, MD, the Sanger Clinic; B. C. Sheri- dan, MD, University of North Carolina at Chapel Hill; D. Rose, MD, Saint Vincents Medical Center; J. Quin, MD, Southern Illinois University School of Medicine; I. Hiratzka, MD, Bethesda North Hospital; M. Felger, MD, Heart Hospital of Austin; B. E. Vazales, MD, Northern Michigan Hospital; R. Murbach, MD, Morton Plant Hos- pital; W. Randolph Chitwood, MD, East Carolina Uni- versity; A. Zacharias, MD, St Luke’s Hospital; R. Engle- man, MD, Baystate Medical Center; R. F. Schneider, Jr, MD, Iowa Methodist Medical Center; J. Magovern, MD, Allegheny General Hospital; M. Goldin, MD, Rush-Presbyterian-St Luke’s Medical Center; T. Spoooner, MD, Park Nicollet Heart Center; D. Mueller, MD, Illinois Car- diac Surgery Associates; F. R. Armenti, MD, McLaren Regional Hospital; R. J. Edgerton, MD, Banner Bay- wood Hospital; P. Pavlin, MD, Kettering Medical Cen- ter; S. R. Hazelrigg, MD, Southern Illinois University School of Medicine; V. Disesa, MD, Chester County Hospital; F. Ferranda, MD, Lankenau Hospital; S. Gun- drey, MD, Desert Regional Medical Center; Y. Naka, MD, Columbia Presbyterian Medical Center; B. Daily, MD, St Elizabeth’s Hospital/Memorial Hospital; D. Torchia- na, MD, Massachusetts General Hospital; G. Blos- som, MD, Riverside Methodist Hospital; J. Brown, MD, University of Maryland; D. Vega, MD, Emory Univer- sity Hospital; J. E. Bavaria, MD, Hospital of the Univer- sity of Pennsylvania; P. K. Shah, MD, Cedars-Sinai Medi- cal Center; T. Boomer, MD, Mountain Sinai; T. Rosegart, MD, University Medical Center; J. Conte, MD, John Hopkins University Medical Cen- ter; J. N. Young, MD, UC-Davis Medical Center.

©2005 American Medical Association. All rights reserved.
PREVENTION IV Steering Committee: R. M. Califf (cochair), Duke University Medical Center, Durham, NC; T. N. Kouchoukos (cochair), Missouri Baptist Medical Center, St. Louis; J. H. Alexander (principal investiga
tor), Duke University Medical Center, Durham, NC; T. B. Keck, University of Cincinnati, Cincinnati, Ohio; C. M. Gib
er, Duke University Medical Center, Durham, NC; T. T. Gage, University of Washington, Seattle, WA; C. C. Cam
n, Brigham and Women’s Hospital, Boston, Mass.

PREVENT IV Data and Safety Monitoring Board: G. Kaiser (chair), Webster Grove, Mo; R. Anderson, Virginia Mason Medical Center, Seattle, Wash; C. Cannon, Brigham and Women’s Hospital, Boston, Mass; J. Tcheng, Duke University Medical Center, Durham, NC; B. Tsibis, North Carolina State University, Raleigh.

Advisory Board: Teck Gill Hafsey, MS; Raki
hki Kilian, MS, for statistical support and Vivian McGee, MTSc, for editorial assistance with the manuscript (all are with the Duke Clinical Research Institute, Durham, NC, and they have no financial rela
tionship with any funding source). Zachary P. A. Kimbrough, BS, for additional data management assis
tance (both are with the Duke University Data Safe
ty and Monitoring Board). Mary Eiken, RN, for clini
cal support (Society of Thoracic Surgeons, Chicago, Ill) for their contributions to PREVENT IV.

REFERENCES

term survival benefits of coronary artery bypass grafting and percutaneous transluminal angioplasty in pa

dional comparison of event-free survival with medical and surgical therapy in patients with coronary ar

6. FitzGibbon GM, Leach AJ, Keon WJ, Burton JR, Ka

9. Lefkovits J, Holmes DR, Califf RM, et al; CAVEE
t Investigators. Predictors and sequelae of distal em

10. Savage MP, Douglas JS Jr, Fischman DL, et al; Sa
pheous Valve Investigators. Clinical and biological differ
cent between vein and arterial conduits: a randomized compari
son with balanced angioplasty for ob

nificant of early saphenous vein graft failure follow

14. Motwani JG, Topol EJ. Aortocoronary saphenous
vein graft disease: pathogenesis, atherosclerotic and func

15. Cox JL, Chiasson DA, Gotlieb AI. Stranger in a
nous vein graft disease: pathogenesis, predisposi

16. Cox JL, Chiasson DA, Gotlieb AI. Stranger in a
nous vein graft disease: pathogenesis, predisposi

stenosis with emphasis on structural and functional dif
erences between veins and arteries. Prog Cardio
diac Dis. 1991;34:45-68.

decoy therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle prolifera

decoy therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle prolifera

24. Ehsan A, Mann MJ, Dell Acqua G, Dzau VJ. Long
term stabilization of coronary artery graft architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J Tho

26. Grube E. Project of Ex-vivo Vein Graft Engineer
ing via Transfection (PREVENT) II trial. Presented at: American Heart Association Scientific Sessions; No
vember 11–14, 2001; Anaheim, Calif.

tion of medical and surgical therapy for coronary ar

30. The BARI Investigators. Seven-year outcome in the Bypass Angioplasty Revascularization Investiga