Contradicted and Initially Stronger Effects in Highly Cited Clinical Research

John P. A. Ioannidis, MD

Controversy and uncertainty ensue when the results of clinical research on the effectiveness of interventions are subsequently contradicted. Controversies are most prominent when high-impact research is involved.

Objectives To understand how frequently highly cited studies are contradicted or find effects that are stronger than in other similar studies and to discern whether specific characteristics are associated with such refutation over time.

Design All original clinical research studies published in 3 major general clinical journals or high-impact-factor specialty journals in 1990-2003 and cited more than 1000 times in the literature were examined.

Main Outcome Measure The results of highly cited articles were compared against subsequent studies of comparable or larger sample size and similar or better controlled designs. The same analysis was also performed comparatively for matched studies that were not so highly cited.

Results Of 49 highly cited original clinical research studies, 45 claimed that the intervention was effective. Of these, 7 (16%) were contradicted by subsequent studies, 7 others (16%) had found effects that were stronger than those of subsequent studies, 20 (44%) were replicated, and 11 (24%) remained largely unchallenged. Five of 6 highly cited nonrandomized studies had been contradicted or had found stronger effects vs 9 of 39 randomized controlled trials ($P = .008$). Among randomized trials, studies with contradicted or stronger effects were smaller ($P = .009$) than replicated or unchallenged studies although there was no statistically significant difference in their early or overall citation impact. Matched control studies did not have a significantly different share of refuted results than highly cited studies, but they included more studies with "negative" results.

Conclusions Contradiction and initially stronger effects are not unusual in highly cited research of clinical interventions and their outcomes. The extent to which high citations may provoke contradictions and vice versa needs more study. Controversies are most common with highly cited nonrandomized studies, but even the most highly cited randomized trials may be challenged and refuted over time, especially small ones.

METHODS

Eligible Original Studies

Eligible original studies for this analysis included all publications that had received more than 1000 Institute for Scientific Information (ISI)—indexed.

Author Affiliations: Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece, and the Institute for Clinical Research and Health Policy Studies, Department of Medicine, Tufts-New England Medical Center, Boston, Mass.

Corresponding Author: John P. A. Ioannidis, MD, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece (ioannidi@cc.uoi.gr).
citations; had been published between 1990 and 2003 in the 3 general medical journals with the current highest impact factor (New England Journal of Medicine, JAMA, Lancet) or in medical specialty journals with impact factor exceeding 7.0 (according to the Journal Citation Reports 2003) that are likely to publish clinical research (including in decreasing impact factor, the Journal of the National Cancer Institute, Gastroenterology, Annals of Internal Medicine, Circulation, Journal of Clinical Oncology, Archives of General Psychiatry, Blood, Hepatology, American Journal of Respiratory and Critical Care Medicine, Diabetes, Brain, Annals of Neurology, Journal of the American College of Cardiology, Diabetes Care, Journal of the American Society of Nephrology, Arthritis and Rheumatism, and the American Journal of Psychiatry); addressed the efficacy of therapeutic or preventive interventions; and pertained to primary data (excluding reviews and meta-analyses).

Citation counts for articles published between January 1, 1990, and December 31, 2003, in these journals were downloaded from ISI. Citation counts are censored on August 20, 2004. All articles with more than 1000 citations were screened further. Studies with group authorship may be cited in various ways; therefore, I summed up citations cataloged under different entries for the same article (using the first author name, group abbreviations, and anonymous entries). The total citation count does not capture the few citations for which wrong name, journal, volume, or page might have been cited. Since citations depend on the time interval since publication, a separate citation count was limited to the first 3 years after the publication year.

Other Clinical Research on the Same Questions
For each eligible original study, a search was performed to identify whether there had been any other concurrently or subsequently published clinical research addressing the same question. Other research was considered eligible, only if the sample size was close to or larger than that of the highly cited original study or if it used a theoretically better controlled design. Thus, for highly cited randomized trials, I perused all randomized trials having at least 30% of the sample size of the eligible highly cited original study. Whenever available, quantitative meta-analyses of trials were used as summaries of trial results. Whenever several pertinent meta-analyses were available, the one including the largest number of studies was preferred. For highly cited nonrandomized studies, subsequently published pertinent randomized trials and meta-analyses thereof were eligible regardless of sample size; nonrandomized evidence was also considered, if randomized trials were not available.

Concurrently or subsequently published evidence was identified in PubMed using searches that combined terms pertaining to the tested interventions, disease and outcome, and terms pertinent to the search of randomized trials and meta-analyses. Searches followed the Cochrane algorithms for finding meta-analyses and randomized trials.

Data Extraction and Classification of Studies
For each eligible original study, I recorded the study name, intervention, disease and outcomes of interest, study design, sample size, main conclusions, and citation counts. For the articles presenting or summarizing other relevant research, I recorded the study design, total sample size, and the findings as compared with those of the original highly cited study.

Highly cited studies were classified as negative (when they claimed the tested experimental intervention was ineffective, harmful, or no better from the control intervention), unchallenged (when no other clinical research of eligible design and sample size was available to validate the claimed efficacy), contradicted, initially stronger effects, or replicated effects. The classification of studies in these categories was based on the final interpretation of the results by the authors in the “Abstract” and “Discussion” sections of their original publications. Highly cited articles were classified according to whether their authors suggested that an intervention was overall effective or ineffective. When both benefits and harms or caveats were presented, I focused on the net conclusion of whether the experimental intervention merits consideration for use in clinical practice. Subsequent research was classified in the same manner. Contradiction was declared when the original highly cited study claimed the intervention to be effective, while subsequent research showed it to be ineffective. When both original and subsequent research claimed the intervention was effective, studies were compared further regarding the effect size for the major clinical outcome, the durability of the treatment effect, and the generalizability and applicability to various settings. Initially stronger effects were defined when the relative risk reduction for the main outcome in the subsequent research was half or less compared with what had been proposed by the original highly cited study (regardless of whether confidence intervals might overlap or not), or when the subsequent research showed that the originally proposed benefit was of short duration or its applicability and generalizability was limited. Classification of the studies independently by another investigator yielded a highly similar profile (weighted Cohen $\kappa = 0.92$).

Correlates of Contradicted or Initially Stronger Effects
Among original highly cited studies with efficacy claims, analyses examined whether those with contradicted or initially stronger effects differed from the replicated and unchallenged ones in study design, publication year, sample size, type of disease (heart disease vs other), journal of publication, citation count, early citation count, and average citations per year after publication. Comparisons used the Mann-Whitney U test for continuous variables and Fisher exact test for binary variables.
Comparison of Highly Cited Articles Against Less Cited Articles

To evaluate whether highly cited studies differ from other studies that are not so highly cited in their findings and potential for contradiction, a control group of articles pertaining to the assessment of interventions was also assembled. Control-group articles were 1:1 matched for journal, year of publication, and design (randomized vs nonrandomized) against each of the highly cited articles. Control articles were selected by screening chronologically the contents of the pertinent journals for each pertinent year starting July 1 (to ensure approximately similar follow-up for citations with the highly cited articles against which they were matched). Other research was searched and the control articles were categorized in a similar fashion as described for the highly cited articles above. Differences between highly cited and control articles were examined with conditional logistic regression to account for matching.

Analyses

Analyses were performed in SPSS version 12.0 (SPSS Inc, Chicago, Ill) and StatXact (Cytel Corp, Boston, Mass). P values are 2-tailed, and \(P < .05 \) was considered statistically significant.

RESULTS

Eligible Studies

One hundred fifteen articles published between 1990 and 2003 had received more than 1000 citations (major general clinical journals, \(n = 91 \); specialty journals, \(n = 24 \)). Of those, 66 were excluded (nonsystematic reviews or editorials, \(n = 20 \); meta-analyses, \(n = 7 \); case-control studies of risk factors, \(n = 12 \); prevalence or incidence studies, \(n = 8 \); cohort studies of risk factors, \(n = 3 \); recommendations, \(n = 3 \); prognostic models, \(n = 4 \); time-trend analysis, \(n = 1 \); case series, \(n = 1 \); presentations of interviews, instruments, or assays \(n = 3 \), classification criteria \(n = 4 \)). The remaining 49 articles were eligible (Table 1), of which 47 had appeared in major general medical journals. They included 43 randomized trials, 4 prospective cohorts, and 2 case series. In recent years (1998 through 2003), the 3 general journals have published an almost equal number of highly cited articles (New England Journal of Medicine, \(n = 4 \); JAMA, \(n = 3 \); Lancet, \(n = 3 \)). A smaller proportion of highly cited articles published in specialty journals than those published in general journals were eligible for the analysis (2/24 vs 47/91, \(P < .001 \)), because highly cited articles in specialized journals were mostly nonsystematic reviews or editorials (10/24); classification criteria (4/24); or descriptions of standardized interviews, instruments, and assays (3/24). Many diverse disciplines were represented, but the most common topic was heart disease (\(n = 27 \)).

Four eligible highly cited studies showed no efficacy for the tested interventions. They contradicted prior claims for potential efficacy of vitamin E, beta carotene, and retinol for lung cancer and/or coronary artery disease; and showed an increased risk of coronary artery disease with hormone therapy in postmenopausal women (Table 2).

Of the 45 eligible highly cited studies with efficacy claims (Table 2), 7 (16%) were contradicted by subsequent research, and another 7 (16%) were found to have initially stronger effects. In all these 14 cases (BOX 1), subsequent studies were either larger or better controlled (randomized vs a nonrandomized original study). The findings of 20 highly cited articles (44%) were replicated (also with a larger sample size in subsequent research compared with the original highly cited study) and 11 (24%) had remained largely unchallenged.

Comparison of Contradicted or Initially Stronger vs Replicated or Unchallenged Findings

Five of 6 highly cited nonrandomized studies had been contradicted or had initially stronger effects while this was seen in only 9 of 39 highly cited randomized trials (\(P = .008 \)). Table 3 shows that trials with contradicted or initially stronger effects had significantly smaller sample sizes and tended to be older than those with replicated or unchallenged findings. There were no significant differences on the type of disease. The proportion of contradicted or initially stronger effects did not differ significantly across journals (\(P = .60 \)). There was also no significant difference in the number of citations received in the first 3 years between these 2 groups or in the overall number of citations over time although the citations per year tended to be nonsignificantly fewer in trials with contradicted or initially stronger effects.

Comparison of Highly Cited Articles Against Less-Cited Control Articles

Of the 49 articles in the control group (with median of 157 citations, range 38-815; until 2004), the findings of 2 articles91,119 were contradicted138,126 and 8 studies* had initially stronger effects130-137 (BOX 2); 20 articles† contained “positive” findings that were replicated68,138-155; 8 studies‡ remained unchallenged, and 11 studies§ did not have any “positive” results; in 7 articles with some “positive” finding79,87,91,98,108,112,120 there were also other interventions evaluated that had “negative” results although this mixture of “positive” and “negative” results had not been observed in any of the highly cited articles. The control articles had a larger number of “negative” findings compared with the highly cited articles (matched odds ratio [OR], 8; 95% confidence interval [CI], 1.8-34; \(P = .006 \) for any “negative” finding; and matched OR, 3.3; 95% CI, 0.92-12.0, \(P = .07 \) for exclusively “negative” findings). The highly cited articles did not have a smaller proportion of contradicted or initially stronger effects than the control articles if anything...
<table>
<thead>
<tr>
<th>Study</th>
<th>Type of Intervention and Disease</th>
<th>Design</th>
<th>Sample Size</th>
<th>All</th>
<th>3-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTG019, 1990</td>
<td>Zidovudine in asymptomatic HIV-1 infection</td>
<td>RCT</td>
<td>1338</td>
<td>1179</td>
<td>549</td>
</tr>
<tr>
<td>Brown et al., 1990</td>
<td>Lipid lowering to decrease coronary lesions and CAD</td>
<td>RCT</td>
<td>146</td>
<td>1312</td>
<td>394</td>
</tr>
<tr>
<td>Moertel et al., 1990</td>
<td>Levamisole and fluorouracil for colon cancer</td>
<td>RCT</td>
<td>246</td>
<td>1050</td>
<td>259</td>
</tr>
<tr>
<td>V-II, 1991</td>
<td>Etilapril vs hydralazine + isosorbide for CHF</td>
<td>RCT</td>
<td>904</td>
<td>1489</td>
<td>386</td>
</tr>
<tr>
<td>Nurses' Health Study, 1991</td>
<td>Postmenopausal hormonal therapy for CAD prevention</td>
<td>Cohort</td>
<td>48 470</td>
<td>1356</td>
<td>230</td>
</tr>
<tr>
<td>NASCET, 1991</td>
<td>Carotid endarterectomy in high-grade stenosis</td>
<td>RCT</td>
<td>659</td>
<td>2434</td>
<td>347</td>
</tr>
<tr>
<td>HA-1A Sepsis, 1991</td>
<td>Monoclonal antibody to endotoxin for gram-negative sepsis</td>
<td>RCT</td>
<td>200</td>
<td>1028</td>
<td>435</td>
</tr>
<tr>
<td>SOLVD, 1991</td>
<td>Etilapril in patients with LV dysfunction</td>
<td>RCT</td>
<td>2569</td>
<td>2798</td>
<td>1113</td>
</tr>
<tr>
<td>SAVE, 1992</td>
<td>Captopril for patients after MI</td>
<td>RCT</td>
<td>2231</td>
<td>2803</td>
<td>632</td>
</tr>
<tr>
<td>PAMI, 1993</td>
<td>Angioplasty vs IVA thrombolysis in acute MI</td>
<td>RCT</td>
<td>395</td>
<td>1642</td>
<td>868</td>
</tr>
<tr>
<td>Captopril Collaborative, 1993</td>
<td>Captopril for slowing disease progression in diabetic nephropathy</td>
<td></td>
<td>409</td>
<td>2090</td>
<td>358</td>
</tr>
<tr>
<td>Health Professionals, 1993</td>
<td>Vitamin E for CAD prevention in men</td>
<td>Cohort</td>
<td>39 910</td>
<td>1281</td>
<td>409</td>
</tr>
<tr>
<td>Nurses' Health Study, 1993</td>
<td>Vitamin E for CAD prevention in women</td>
<td>Cohort</td>
<td>87 245</td>
<td>1131</td>
<td>409</td>
</tr>
<tr>
<td>Rossaint et al., 1993</td>
<td>Nitric oxide inhalation for acute respiratory distress syndrome</td>
<td>Case series</td>
<td>9</td>
<td>1025</td>
<td>399</td>
</tr>
<tr>
<td>DCCOT, 1993</td>
<td>Intensive management to reduce type 1 diabetes complications</td>
<td>RCT</td>
<td>1441</td>
<td>6005</td>
<td>1260</td>
</tr>
<tr>
<td>EPIC, 1994</td>
<td>IE3 in high-risk angioplasty</td>
<td>RCT</td>
<td>2099</td>
<td>1461</td>
<td>233</td>
</tr>
<tr>
<td>ACTG307, 1994</td>
<td>Zidovudine to reduce perinatal HIV-1 transmission</td>
<td>RCT</td>
<td>477</td>
<td>1449</td>
<td>461</td>
</tr>
<tr>
<td>STRESS, 1994</td>
<td>Stent vs balloon angioplasty in CAD</td>
<td>RCT</td>
<td>410</td>
<td>2133</td>
<td>543</td>
</tr>
<tr>
<td>BENESTENT, 1994</td>
<td>Stent vs balloon angioplasty in single-vessel CAD</td>
<td>RCT</td>
<td>520</td>
<td>2286</td>
<td>633</td>
</tr>
<tr>
<td>ABC, 1994</td>
<td>Vitamin E and beta carotene for lung cancer</td>
<td>RCT</td>
<td>29 133</td>
<td>1872</td>
<td>542</td>
</tr>
<tr>
<td>NINDS r-PA, 1995</td>
<td>r-PA in acute stroke</td>
<td>RCT</td>
<td>624</td>
<td>1839</td>
<td>485</td>
</tr>
<tr>
<td>WOSCOPS, 1995</td>
<td>Pravastatin in hypercholesterolemia</td>
<td>RCT</td>
<td>6595</td>
<td>3163</td>
<td>901</td>
</tr>
<tr>
<td>CARE, 1996</td>
<td>Pravastatin after MI with average cholesterol</td>
<td>RCT</td>
<td>4195</td>
<td>2795</td>
<td>908</td>
</tr>
<tr>
<td>US Carvedilol, 1996</td>
<td>Carvedilol for CHF</td>
<td>RCT</td>
<td>1094</td>
<td>1544</td>
<td>543</td>
</tr>
<tr>
<td>BEPET, 1996</td>
<td>Beta carotene/retinol for preventing lung cancer/CAD</td>
<td>RCT</td>
<td>18 314</td>
<td>1044</td>
<td>439</td>
</tr>
<tr>
<td>Physicians' Health, 1997</td>
<td>Aspirin to prevent MI in men with various C-reactive protein levels</td>
<td>RCT</td>
<td>1086</td>
<td>1597</td>
<td>539</td>
</tr>
<tr>
<td>ACTG320, 1997</td>
<td>Triple therapy with indinavir vs 2 nucleosides in HIV-1 infection</td>
<td>RCT</td>
<td>1156</td>
<td>1206</td>
<td>728</td>
</tr>
<tr>
<td>EPILGOS, 1997</td>
<td>Abciximab glycoprotein IIb/IIIa blockade in PCI</td>
<td>RCT</td>
<td>2792</td>
<td>1066</td>
<td>586</td>
</tr>
<tr>
<td>HIT, 1998</td>
<td>Interferon alfa-2b + ribavirin vs interferon alone for chronic hepatitis C</td>
<td>RCT</td>
<td>912</td>
<td>1319</td>
<td>612</td>
</tr>
<tr>
<td>LIPE, 1998</td>
<td>Pravastatin for secondary CAD prevention</td>
<td>RCT</td>
<td>9014</td>
<td>1641</td>
<td>750</td>
</tr>
<tr>
<td>RALES, 1999</td>
<td>Spiromitadone in severe CHF</td>
<td>RCT</td>
<td>1663</td>
<td>1035</td>
<td>635</td>
</tr>
<tr>
<td>HOPE, 2000</td>
<td>Ramipril to prevent CAD in high-risk patients without LV dysfunction/CHF</td>
<td>RCT</td>
<td>9297</td>
<td>1777</td>
<td>1323</td>
</tr>
<tr>
<td>SHEP, 1991</td>
<td>Treatment of systolic hypertension in elderly adults</td>
<td>RCT</td>
<td>4736</td>
<td>1872</td>
<td>397</td>
</tr>
<tr>
<td>PEP, 1995</td>
<td>Postmenopausal estrogen/progestin for CAD risk factors</td>
<td>RCT</td>
<td>875</td>
<td>1300</td>
<td>320</td>
</tr>
<tr>
<td>ACAS, 1995</td>
<td>Endarterectomy in asymptomatic stenosis >60%</td>
<td>RCT</td>
<td>1662</td>
<td>1427</td>
<td>416</td>
</tr>
<tr>
<td>HERS, 1998</td>
<td>Estrogen/progestin for secondary CAD prevention</td>
<td>RCT</td>
<td>2763</td>
<td>2050</td>
<td>987</td>
</tr>
<tr>
<td>AFCAPS/TexCAPS, 1998</td>
<td>Lovastatin for primary CAD prevention with average cholesterol</td>
<td>RCT</td>
<td>6605</td>
<td>1559</td>
<td>731</td>
</tr>
<tr>
<td>WHI, 2002</td>
<td>Estrogen/progestin for CAD prevention</td>
<td>RCT</td>
<td>16 608</td>
<td>1486</td>
<td>2004*</td>
</tr>
<tr>
<td>MRC, 1991</td>
<td>Folat to prevent neutral tube defects</td>
<td>RCT</td>
<td>1817</td>
<td>1096</td>
<td>378</td>
</tr>
<tr>
<td>Zulphen Elderly, 1993</td>
<td>Rivaroxoids for CAD prevention</td>
<td>Cohort</td>
<td>905</td>
<td>1233</td>
<td>511</td>
</tr>
<tr>
<td>AS, 1994</td>
<td>Simvastatin in hypercholesterolemia with previous CAD</td>
<td>RCT</td>
<td>4444</td>
<td>4613</td>
<td>980</td>
</tr>
<tr>
<td>CAPRIE, 1996</td>
<td>Clopidogrel vs aspirin in patients at risk of ischemic events</td>
<td>RCT</td>
<td>19 185</td>
<td>1139</td>
<td>280</td>
</tr>
<tr>
<td>CHAOS, 1996</td>
<td>Vitamin E to prevent MI and death in patients with CAD</td>
<td>RCT</td>
<td>2002</td>
<td>1004</td>
<td>425</td>
</tr>
<tr>
<td>HOT, 1998</td>
<td>Intensive blood-pressure lowering/low-dose aspirin in hypertension</td>
<td>RCT</td>
<td>18 790</td>
<td>1539</td>
<td>799</td>
</tr>
<tr>
<td>IHT, 1998</td>
<td>Interferon alfa-2b + ribavirin vs interferon alone for chronic hepatitis C</td>
<td>RCT</td>
<td>832</td>
<td>1044</td>
<td>486</td>
</tr>
<tr>
<td>UKPDS 34, 1998</td>
<td>Intensive management of type 2 diabetes with insulin or sulphonylureas</td>
<td>RCT</td>
<td>3867</td>
<td>2748</td>
<td>1238</td>
</tr>
<tr>
<td>CISS, 1999</td>
<td>Bisoprolol for CHF</td>
<td>RCT</td>
<td>2847</td>
<td>1064</td>
<td>653</td>
</tr>
<tr>
<td>Carstensen et al., 1999</td>
<td>All-trans retinoic acid for acute promyelocytic leukemia</td>
<td>Case series</td>
<td>22</td>
<td>1030</td>
<td>270</td>
</tr>
<tr>
<td>NSABP B-17, 1998</td>
<td>Tamoxifen for breast cancer prevention</td>
<td>RCT</td>
<td>13 388</td>
<td>1470</td>
<td>745</td>
</tr>
</tbody>
</table>

Abbreviations: ABC, Alpha-Tocopherol, Beta Carotene Cancer Prevention; ACAS, Asymptomatic Carotid Atherosclerosis Study; ACTG, AIDS Clinical Trials Group; AFCAPS/TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; BENESTENT, Belgian Netherlands Stent; BEPET, Beta Carotene and Retinol Efficacy Trial; CAD, coronary artery disease; CAPRIE, Clopidogrel vs Aspirin in Patients at Risk of Ischemic Events; CARE, Cholesterol and Recurrent Events Trial; CHAOS, Cambridge Heart Antioxidant Study; CHF, congestive heart failure; CISS-II, Cardiac Insufficiency Survival Study II; DCTT, Diabetes Control and Complications Trial; EPIC, Evaluation of IE3 for the Prevention of Ischemic Complications; EPILGOS, Evaluation in PTCA to Improve Long-Term Outcome with Abciximab Glycoprotein IIb/IIIa Blockade; HA-1H, Human IgM monoclonal antibody; HERS, Heart and Estrogen/Progestin Replacement Study; HIF, Hepatitis Interferon Trial; HIV, human immuno-deficiency virus type 1; HOPE, Heart Outcomes Prevention Evaluation; HOT, Hypertension Optimal Treatment; IHT, International Hepatitis Interventional Therapy; LIPID, Long-Term Intervention with Pravastatin in Ischemic Disease; LV, left ventricular; MI, myocardial infarction; MRC, Medical Research Council; NASCET, North American Symptomatic Carotid Endarterectomy Trial; NINDS r-PA, National Institute of Neurological Disorders and Stroke recombinant tissue-Plasminogen Activator; NSABP B-17, National Surgical Adjuvant Breast and Bowel Project B-17; PAMI, Primary Angioplasty in Myocardial Infarction; PCI, percutaneous coronary intervention; PEP, Postmenopausal Estrogen/Progestin Interventions; RALES, Randomized Aldactone Evaluation Study; RCT, randomized controlled trial; SAVE, Survival And Ventricular Enlargement; SHEP, Systolic Hypertension in the Elderly Program; SOLVD, Studies of Left Ventricular dysfunction; STRESS, Stent Restenosis Study; UKPDS 34, UK Prospective Diabetes Study 34; V-II, Vasodilator-Heart Failure Trial II; WHI, Women's Health Initiative; WOSCOPS, West of Scotland Coronary Prevention Study; 4S, Scandinavian Simvastatin Survival Study.

*Projected.

©2005 American Medical Association. All rights reserved.
Table 2. Other Research and Current State of Knowledge

<table>
<thead>
<tr>
<th>Highly Cited Study</th>
<th>Other Research</th>
<th>No. of Participants*</th>
<th>Comment on Current State of Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contradicted studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurses’ Health Study</td>
<td>RCT1</td>
<td>16 608</td>
<td>Estrogen/progestin do not protect from but increase CAD risk in postmenopausal women</td>
</tr>
<tr>
<td>HA-1A Sepsis</td>
<td>RCT2</td>
<td>2199</td>
<td>Contrary to initial findings, HA-1A did not improve survival in gram-negative sepsis</td>
</tr>
<tr>
<td>Health Professionals</td>
<td>RCT3</td>
<td>6966</td>
<td>Contrary to initial findings, vitamin E supplementation does not reduce CAD in men</td>
</tr>
<tr>
<td>Nurses’ Health Study</td>
<td>RCT4</td>
<td>2545</td>
<td>Contrary to initial findings, vitamin E supplementation does not reduce CAD in women</td>
</tr>
<tr>
<td>Rossaint et al.</td>
<td>MA RCT6</td>
<td>535</td>
<td>Despite initial claims of better oxygenation, nitric oxide does not improve survival in respiratory distress syndrome</td>
</tr>
<tr>
<td>PEPC</td>
<td>RCT7</td>
<td>16 608</td>
<td>Estrogen/progestin do not protect from but increase CAD risk in postmenopausal women</td>
</tr>
<tr>
<td>CHAOS</td>
<td>MA RCT8</td>
<td>9541</td>
<td>Contrary to initial findings, vitamin E does not prevent coronary events</td>
</tr>
</tbody>
</table>

Initially stronger effects			
ACTG019	MA RCT9	5566	The early benefit of zidovudine against HIV-1 disease progression decreases over time
PAMI	MA RCT10	2593	Superiority of angioplasty over ICA thrombolysis may be less prominent than originally proposed and pertinent mostly to specialized centers
STRESS	MA RCT11	9918	Stents reduce restenosis and need for revascularization compared with simple angioplasty, but the effect may be inflated by lack of blinding and is probably modest
BENESTENT	MA RCT12	9918	Stents reduce restenosis and need for revascularization compared with simple angioplasty, but the effect may be inflated by lack of blinding and is probably modest
NINDS rt-PA	MA RCT13	2775	rt-PA may improve outcomes in acute ischemic stroke, but benefit is limited and seen only when treatment is given very early
ACAS	MA RCT14	2440	Carotid endarterectomy has a small absolute benefit in asymptomatic stenosis >60%
Zutphen Elderly	MA cohorts15	105 000	Flavonoids reduce the risk of CAD modestly

Replicated studies				
Brown et al.	MA RCT16	148 321	Cholesterol and LDL lowering achieves significant risk reductions in CAD	
Moertel et al	MA RCT17	3902	Fluorouracil adjuvant therapy improves survival in colon cancer	
NASCET	MA RCT18	6092	Carotid endarterectomy is effective in symptomatic patients with 70%-99% stenosis	
SOLVD	MA RCT19	7105	ACE inhibition reduces mortality and hospitalizations in patients with CHF	
SAVE	MA RCT20	105 357	ACE inhibition reduces mortality after MI	
EPIC	MA RCT21	20 137	Glycoprotein IIb/IIIa antagonists reduce cardiovascular events in percutaneous revascularization	
WOSCOPS	MA RCT22	148 321	Statins achieve significant risk reductions in CAD	
CARE	MA RCT23	148 321	Statins achieve significant risk reductions in CAD	
US Caverdilol	MA RCT24	10 135		
ACTG320	MA RCT25	4868	Protease-inhibitor-based triple therapy improves survival compared with double nucleosides in HIV-1 infection	
EPLOG	MA RCT26	20 137	Glycoprotein IIb/IIIa antagonists reduce cardiovascular events in percutaneous revascularization	
HIT	MA RCT27	6585		
LIPID	MA RCT28	148 321	Statins achieve significant risk reductions in CAD	
SHEP	MA RCT29	15 693	Treatment of isolated hypertension in elderly patients reduces the risk of stroke	
AFCAPS/TexCAPS	MA RCT30	148 321	Cholesterol and LDL lowering achieves significant risk reductions in CAD	
4S	MA RCT31	148 321	Statins achieve significant risk reductions in CAD	
IHT	MA RCT32	6585	Interferon alfa-2b plus ribavirin has better outcomes than interferon alone in chronic hepatitis C	
CIBIS-LL	MA RCT33	10 135		
All-trans-retinoid acid	MA RCT34	346		
NSABP P-1	MA RCT35	28 406	Tamoxifen is effective for the prevention of breast cancer	

Unchallenged studies			
V-HeFT ll	MA RCT36	6585	Interferon alfa-2b + ribavirin has better outcomes than interferon alone in chronic hepatitis C
Captopril Collaborative	MA RCT37	6585	Intensive insulin management of type 1 diabetes reduces microvascular complications
DCCT	MA RCT38	6585	Intensive insulin management of type 1 diabetes reduces microvascular complications
ACTG076	MA RCT39	6585	Zidovudine reduces the risk of perinatal HIV-1 transmission (subsequent research has addressed shorter and more convenient regimens)
Physicians’ Health	MA RCT40	6585	Aspirin prevents MI especially in men with high levels of C-reactive protein
MRC Vitamin	MA RCT41	6585	Folate supplementation significantly reduces the risk of neural tube defects (subsequent research has addressed various doses and modes of administration of folate)
RALES	MA RCT42	6585	Spironolactone reduces morbidity and mortality in CHF (no other similar trial)
HOPE	MA RCT43	6585	Ramipril prevents CAD events in high-risk patients without left ventricular dysfunction (no other similar trial)
CAPRIE	MA RCT44	6585	Clopidogrel seems superior to aspirin in preventing stroke and MI in patients at risk of ischemic stroke (subsequent research has addressed the combination of clopidogrel and aspirin)
HOT	MA RCT45	6585	Intensive blood pressure lowering decreases the risk of cardiovascular events (2 much smaller trials have shown similar effects of intensive blood pressure lowering in patients with diabetes)
UKPDS 34	MA RCT46	6585	Intensive management of type 2 diabetes reduces the risk of microvascular complications

Negative studies			
ABC			
BERET			
HERPEP			
WHIP			

Abbreviations: The abbreviations of the highly cited studies correspond to the popular names listed in Table 1. ACE, angiotensin-converting enzyme; CAD, coronary artery disease; CHF, congestive heart failure; HA-1A, human IgM monoclonal antibody; HIV-1, human immunodeficiency virus type 1; LDL, low-density lipoprotein; MA, meta-analysis; RCT, randomized controlled trial; rt-PA, recombinant tissue-type plasminogen activator; ICA, internal carotid artery. *For meta-analyses, the number of participants refers to the total sample size of all studies (large and small ones) and includes the sample size of the original highly cited study.
Box 1. Contradicted and Initially Stronger Effects in Highly Cited Studies

Contradicted Findings

The Nurses’ Health Study,13 a prospective cohort, found a 44% relative risk reduction in coronary artery disease events in women receiving hormone therapy. A small randomized trial42 found major beneficial effects of this intervention on surrogate markers of coronary artery disease (lipoprotein and fibrinogen levels) claiming that this should translate to a major clinical benefit. Although the latter trial was not refuted at the level of surrogate outcomes, inferences for the anticipated effects on clinical outcomes were contradicted. The Women’s Health Initiative,43 a large randomized trial, found that estrogen and progestin significantly increased the relative risk of coronary events by 29% among postmenopausal women, and refuting results were also seen in another large randomized trial, the Heart and Estrogen/progestin Replacement Study (HERS).44

Two large prospective cohort studies, the Health Professionals Follow-Up study45 and the Nurses’ Health Study,46 found that vitamin E was significantly associated with a decreased risk of coronary artery disease and a trial of 2002 patients also suggested a 47% relative risk reduction for cardiovascular deaths or nonfatal myocardial infarction with vitamin E.51 However, an even larger randomized trial66 subsequently showed absolutely no beneficial effect for vitamin E on coronary artery disease (relative risk 1.05 for cardiovascular deaths and 1.02 for myocardial infarction).

A small randomized trial (n=200) suggested that the human IgM monoclonal antibody to endotoxin could almost halve mortality due to gram-negative sepsis.57 A subsequent randomized trial of more than 10-fold larger sample size62 found a nonsignificant 11% relative risk increase for mortality.

Finally, a small series of 9 patients22 proposed that nitric oxide inhalation is very effective in patients with respiratory distress syndrome by improving oxygenation. However 5 randomized trials involving 535 patients48 failed to show any clinical benefit.

Initially Stronger Effects

The early results of a trial on zidovudine monotherapy in asymptomatic patients with human immunodeficiency virus infection8 showed a significant 60% relative risk reduction against disease progression in the first year. The short-term benefit was not exaggerated. Yet this effect was short-lived and the benefit was lost after 18 months both in the same trial and also as shown in a subsequent meta-analysis.48

A randomized trial of 395 patients18 showed that immediate angioplasty was superior to thrombolysis with tissue plasminogen activator in acute myocardial infarction, achieving a 58% relative risk reduction for death or reinfarction. However, a subsequent meta-analysis with more than 2500 patients65 suggested that the benefit is probably much smaller (relative risk reduction 30%) and the largest and most recent trial that involved both specialized and non-specialized centers had not shown any sizeable benefit of angioplasty (nonsignificant 20% risk reduction for death and nonsignificant 33% risk reduction for reinfarction).

Two randomized trials of 410 and 520 patients, respectively,26,27 showed that stents were superior to balloon angioplasty for management of coronary artery disease with 31% and 42% relative risk reductions, respectively, in the need for revascularization. Current evidence, as summarized by a meta-analysis of almost 10 000 patients, suggests that the benefit is probably much smaller that originally thought (approximately 10% relative risk reduction), and unblinding may have led to an increased effect on repeat angioplasty in these trials.69

Another trial suggested a prime role for tissue plasminogen activator in acute ischemic stroke.29 However, subsequent evidence has narrowed indications and the intervention is considered effective mostly when given very early after symptom onset.70

Carotid endarterectomy was initially reported to achieve a 5.9% absolute risk reduction for stroke or death, projected at 5 years.43 in patients with asymptomatic stenosis of the carotid artery exceeding 60%. A meta-analysis of several trials suggested a more modest benefit with 2% absolute risk reduction at 3.1 years.71 Finally, a cohort study of 805 people found a 68% adjusted relative risk reduction for coronary artery disease with flavonoids44 while a meta-analysis of prospective cohorts with total sample size exceeding 100 000 suggests only a 20% relative risk reduction in the top vs bottom third of flavonoid uptake.76

There was a trend for more contradicted or initially stronger effects in the highly cited articles (matched OR, 1.6; 95% CI, 0.6-4.0; P=.35; matched OR, 6.0; 95% CI, 0.7-50; P=.10 when limited to contradicted findings).

COMMENT

Original highly cited articles about medical interventions are published almost exclusively in 3 general medical journals. Actually, there has been an approximately equal share of very highly cited articles among these 3 journals since 1998 as impact factor differences have diminished among these 3 journals. Articles in specialty journals that reach such high numbers of citations are usually review articles or articles describing tools useful to specific diseases rather than original data. Contradicted and potentially exaggerated findings are not uncommon in the most visible and most influential original clinical research: 16% of the top-cited clinical research articles on postulated effective medical interventions that have been published within the last 15 years have been contradicted by subsequent clinical studies and another 16% have been found to have initially stronger effects than subsequent research. Contradiction or initially stronger effects have been encountered in 5 of 6 cases for which nonrandomized designs were used, but even randomized trials have not escaped controversy. More
CONTRADICTED AND INITIALLY STRONGER EFFECTS IN HIGHLY CITED CLINICAL RESEARCH

Table 3. Comparison of Characteristics and Citation Counts of Randomized Trials With Contradicted or Initially Stronger Effects vs Those With Replicated or Unchallenged Findings

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Contradicted or Initially Stronger Effects (n = 9)</th>
<th>Replicated or Unchallenged (n = 30)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published in 1990-1995</td>
<td>8</td>
<td>15</td>
<td>.06</td>
</tr>
<tr>
<td>Heart disease topic</td>
<td>4</td>
<td>13</td>
<td>1.00</td>
</tr>
<tr>
<td>Sample size, median (IQR)</td>
<td>624 (403-1500)</td>
<td>2165 (892-5201)</td>
<td>.009</td>
</tr>
<tr>
<td>All citations received, median (IQR)</td>
<td>1427 (1104-2046)</td>
<td>1542 (1255-2513)</td>
<td>.43</td>
</tr>
<tr>
<td>Citations in 3 y, median (IQR)</td>
<td>485 (421-591)</td>
<td>622 (393-825)</td>
<td>.32</td>
</tr>
<tr>
<td>Citations per year, median (IQR)</td>
<td>149 (105-215)</td>
<td>214 (146-263)</td>
<td>.07</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range.

than a third of the top-cited randomized trials published from 1990 through 1995 have already been affected, while for more recent trials, the time frame is still early and may more be contradicted in the future. Sample size seems to be important, with smaller sample sizes in trials that have met controversy vs those that have not.

The classification of studies in this analysis involves many judgments pertaining to the complexity of studying a given research question with somewhat different populations, interventions, durations, and outcomes. However, these studies are widely known for their inferences and this is also proven by the high interrater agreement. Nevertheless, it should also be acknowledged that although the classification was performed in duplicate, the searches were performed by only 1 investigator. It is unavoidable that some other investigators may feel differently about the categorization of specific studies, especially for topics that may also have heavy debates surrounding them. However, this is unlikely to change the aggregate picture about refutation rates.

The examination of contradictions and refutations offers a fascinating look at the process of science. Four of the highly cited articles examined herein were refuting investigations with “negative” results. However, in a sense, even the other highly cited articles with “positive” results refuted prior knowledge and practice by introducing new concepts and proposing new interventions. We should acknowledge that there is no proof that the subsequent studies and meta-analyses were necessarily correct. A perfect gold standard is not possible in clinical research, so we can only interpret results of studies relative to other studies. Whenever new research fails to replicate early claims for efficacy or suggests that efficacy is more limited than previously thought, it is not necessary that the original studies were totally wrong and the newer ones are correct simply because they are larger or better controlled. Alternative explanations for these discrepancies may include differences in disease spectrum, eligibility criteria, or the use of concomitant interventions. Different studies on the same question are typically not replicas of each other. In fact discrepancies may be interesting on their own because they require careful scrutiny of the data and reappraisal of our beliefs. Thus, it is probably not surprising that the citation rate of these refuted studies did not seem to be much affected. Nevertheless, the controversy generates considerable uncertainty for clinical practice and none of the contradicted interventions is currently recommended by practice guidelines.

The mere fact that a study is highly cited suggests that there is a strong active interest in the questions addressed from a clinical or research perspective. This may increase the chances that other, larger trials may eventually be conducted. However, for most clinical questions of interest, no large trials are ever conducted and evidence is based only on small trials or randomized studies. Small trials or meta-analyses thereof may often be refuted subsequently by large trials when such large trials are performed. Small studies using surrogate markers may also sometimes lead to erroneous clinical inferences. There were only 2 studies with typical surrogate markers among the highly cited studies examined herein, but both were subsequently contradicted in their clinical extrapolations about the efficacy of nitric oxide and hormone therapy. In the case of initially stronger effects, the differences in the effect sizes could often be within the range of what would be expected based on chance variability. This reinforces the notion that results from clinical studies, especially early ones, should be interpreted using not only the point estimates but also the uncertainty surrounding them. However, besides differences in effect sizes, most initially stronger effects pertained also to issues of durability, generalizability, or applicability of the proposed effects, as discussed above. Thus, clinicians should be aware that these important aspects may not be fully settled when an important treatment breakthrough is announced.

A third of the most-cited clinical research seems to have replication problems, and this seems to be as large, if not larger, than the vast majority of other, less-cited clinical research. The current analysis found that matched studies that were not so highly cited had a greater proportion of “negative” findings and similar or smaller proportions of contradicted results as the highly cited ones. Publication bias and time-lag bias favoring the rapid and prominent publication of “positive” findings may underlie some of the observed phenomena. Highly cited articles are already a selected sample with underrepresentation of “negative” findings compared with the average article on interventions published in major journals. It is possible that high-profile journals may tend to publish occasionally very striking findings and that this may lead to some difficulty in replicating some of these findings. Poynard et al evaluated the conclusions of hepatology-related articles published between 1945 and 1999 and found that, overall, 60% of these conclusions were
In a prospective cohort study, vitamin A was inversely related to breast cancer (relative risk in the highest quintile, 0.84; 95% confidence interval [CI], 0.71-0.98) and vitamin A supplementation was associated with a reduced risk (P = .03) in women at the lowest quintile group. In a randomized trial exploring further the retinoid-breast cancer hypothesis, fenretinide treatment of women with breast cancer for 5 years had no effect on the incidence of second breast malignancies.

A trial (n = 31) showed that cladribine significantly improved the clinical scores of patients with chronic progressive multiple sclerosis. In a larger trial of 199 patients, no significant treatment effects were found for cladribine in terms of changes in clinical scores.

Initially Stronger Effects

A trial (n = 28) of aerosolized ribavirin in infants receiving mechanical ventilation for severe respiratory syncytial virus infection showed significant decreases in mechanical ventilation (4.9 vs 9.9 days) and hospital stay (13.3 vs 15.0 days). A meta-analysis of 3 trials (n = 104) showed a decrease of only 1.8 days in the duration of mechanical ventilation and a nonsignificant decrease of 1.9 days in duration of hospitalization.

A trial (n = 406) of intermittent diazepam administered during fever to prevent recurrence of febrile seizures showed a significant 44% relative risk reduction in seizures. The effect was smaller in other trials and the overall risk reduction was no longer formally significant. Moreover, the safety profile of diazepam was deemed unfavorable to recommend routine preventive use.

A case-control and cohort study evaluation showed that the increased risk of sudden infant death syndrome among infants who sleep prone is increased by use of natural-fiber mattresses, swaddling, and heating in bedrooms. Several observational studies have been done since, and they have provided inconsistent results on these interventions, in particular, they disagree on the possible role of overheating.

A trial of 54 children showed that the steroid budesonide significantly reduced the croup score by 2 points at 4 hours, and significantly decreased readmissions by 86%. A meta-analysis of 31 trials, budesonide compared with placebo showed no significant efficacy (relative risk of failure, 0.75; 95% CI, 0.32-1.77), and was also no better than glyceryl trinitrate (relative risk of failure, 0.48; 95% CI, 0.21-1.10). Surgery was more effective than medical therapy in curing lissu (relative risk of failure, 0.12; 95% CI, 0.07-0.22).

A trial of acetylcysteine (n = 83) showed that it was highly effective in preventing contrast nephropathy (90% relative risk reduction). There have been many more trials and many meta-analyses on this topic. The latest meta-analysis shows a nonsignificant 27% relative risk reduction with acetylcysteine.

A trial of 129 stunted Jamaican children found that both nutritional supplementation and psychosocial stimulation improved the mental development of stunted children; children who got both interventions had additive benefits and achieved scores close to those of nonstunted children. With long-term follow-up, however, it was found that the benefits were small and the 2 interventions no longer had additive effects.

Box 2. Contradicted and Initially Stronger Effects in Control Studies

Contradicted Findings

In a prospective cohort, vitamin A was inversely related to breast cancer (relative risk in the highest quintile, 0.84; 95% confidence interval [CI], 0.71-0.98) and vitamin A supplementation was associated with a reduced risk (P = .03) in women at the lowest quintile group; in a randomized trial exploring further the retinoid-breast cancer hypothesis, fenretinide treatment of women with breast cancer for 5 years had no effect on the incidence of second breast malignancies.

A trial (n = 31) showed that cladribine significantly improved the clinical scores of patients with chronic progressive multiple sclerosis. In a larger trial of 199 patients, no significant treatment effects were found for cladribine in terms of changes in clinical scores.

Initially Stronger Effects

A trial (n = 28) of aerosolized ribavirin in infants receiving mechanical ventilation for severe respiratory syncytial virus infection showed significant decreases in mechanical ventilation (4.9 vs 9.9 days) and hospital stay (13.3 vs 15.0 days). A meta-analysis of 3 trials (n = 104) showed a decrease of only 1.8 days in the duration of mechanical ventilation and a nonsignificant decrease of 1.9 days in duration of hospitalization.

A trial (n = 406) of intermittent diazepam administered during fever to prevent recurrence of febrile seizures showed a significant 44% relative risk reduction in seizures. The effect was smaller in other trials and the overall risk reduction was no longer formally significant; moreover, the safety profile of diazepam was deemed unfavorable to recommend routine preventive use.

A case-control and cohort study evaluation showed that the increased risk of sudden infant death syndrome among infants who sleep prone is increased by use of natural-fiber mattresses, swaddling, and heating in bedrooms. Several observational studies have been done since, and they have provided inconsistent results on these interventions, in particular, they disagree on the possible role of overheating.

A trial of 54 children showed that the steroid budesonide significantly reduced the croup score by 2 points at 4 hours, and significantly decreased readmissions by 86%. A meta-analysis of 31 trials, budesonide compared with placebo showed no significant efficacy (relative risk of failure, 0.75; 95% CI, 0.32-1.77), and was also no better than glyceryl trinitrate (relative risk of failure, 0.48; 95% CI, 0.21-1.10). Surgery was more effective than medical therapy in curing lissu (relative risk of failure, 0.12; 95% CI, 0.07-0.22).

A trial of acetylcysteine (n = 83) showed that it was highly effective in preventing contrast nephropathy (90% relative risk reduction). There have been many more trials and many meta-analyses on this topic. The latest meta-analysis shows a nonsignificant 27% relative risk reduction with acetylcysteine.

A trial of 129 stunted Jamaican children found that both nutritional supplementation and psychosocial stimulation improved the mental development of stunted children; children who got both interventions had additive benefits and achieved scores close to those of nonstunted children. With long-term follow-up, however, it was found that the benefits were small and the 2 interventions no longer had additive effects.

considered to be true in 2000 and that there was no difference between randomized and nonrandomized studies or high- vs low-quality studies. Allowing for somewhat different definitions, the higher rates of refutation and the generally worse performance of nonrandomized studies in the present analysis may stem from the fact that I focused on a selected sample of the most noticed and influential clinical research. For such highly cited studies, the turnaround of “truth” may be faster; in particular, nonrandomized studies may be more likely to be probed and challenged than nonrandomized studies published in the general literature.

Finally, a certain proportion of highly cited trials may remain unchallenged. Sometimes the evidence from the original study may seem so overwhelming that further similar studies are deemed unethical to perform. The original study may be widely considered as a milestone for clinical practice and may provide the gold standard for testing new interventions. However, sometimes other, validating research may be in the works. Clinical research is time-consuming and challenging results may take several years to generate and publish. Therefore evidence from recent trials, no matter how impressive, should be interpreted with caution, when only one trial is available. It is important to know whether other similar or larger trials are still ongoing or being planned. Therefore, transparent and thorough trial registration is of paramount im-
portance in order to limit premature claims for efficacy.

Author Contributions: Dr Ioannidis had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Financial Disclosures: None reported.

Acknowledgment: I thank Dr Tom Trikalinos for clarifying independently the status of the highly cited articles.

REFERENCES
1. LeLorier J, Gregerie G, Benhadad A, Lapierre J, Derden F. Discrepancies between meta-analyses and sub
2000;342:1877-1892.
4. Conatto J, Shah N, Horwitz RI. Randomized, con
10. Brown G, Albers JI, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid- lowering therapy in men with high levels of apolipo
vmazole and fluorouracil for adjuvant therapy of rec
18. The Diabetes Control and Complications Trial Re
search Group. The effect of intensive treatment of dia
betes on the incidence of diabetic retinopathy and progres
19. The EPIC Investigation. Use of a monoclonal an
20. Connor JM, Sperling RS, Gerber RL, et al; Pediat
stenosis Study Investigators. A randomized compari
22. Semynick PW, de Jaegere P, Kiemeneij E, et al; BENE
23. The Alpha-Tocopherol, Beta Carotene Cancer Pre
26. Sacks FM, Pfeiffer MA, Moyle LA, et al; Choles
terol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial in
27. Packer M, Bristow MR, Cohn JN, et al; US Carve
diovascular Disease Interventional Therapy Group. Interferon alfa-2b and Recurrent Events Trial Investigators. Interferon alfa-2b alone or in combination with ribavirin as initial treat
30. Vollenweider P, Sliedt J, Bock J, Davies R, Da
genis G; The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting enzyme-inhibitor, ramipril, on cardiovas
31. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older pa
32. The Writing Group for the PEPI Trial. Effects of estrogen or estrogen/progestin regimens on heart dis
33. Executive Committee for the Asymptomatic Car
rotid Atherosclerosis Study. Endarterectomy for asympto
34. Hulley S, Grady D, Bush T, et al; Heart and Es
trogen/progestin Replacement Study (HERS) Re
search Group. Randomized trial of estrogen plus progres
vention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of the AFCAPS/TexCAPS. JAMA. 1998;279:1615-1622.
menopausal women: principal results from the Wom
39. Randomised trial of cholesterol lowering in 444444 patients with coronary heart disease: the Scandina
41. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised con
105. Brisinda G, Maria G, Bentivoglio AR, Cassetta E, Gui D, Albanese A. Comparison of injections of buton-
106. Tepel M, van der Giet M, Schwarzfeld C, Lauffer U, Liermann D, Zidek W. Prevention of radiograph-
107. Levine AM, Wernz J, Kaplan L, et al. Low-dose chemotherapy with central nervous system prophyl-
108. Freeman EW, Rickels K, Sundheimer SJ, Polan-
sky M. A double-blind trial of oral progesterone, alpro-
zoa, and placebo in treatment of severe premen-
109. Williams-Russo P, Shanroe NC, Mathis S, Sza-
trowski TP, Charlson ME. Cognitive effects after epi-
dural vs general anesthesia in older adults: a random-
110. Molinari GU, Hoekse AS, Golden E, et al. Effect of prolonged methylprednisolone therapy in unresolv-
ing acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998;280:159-165.
111. Stovall WD, Hwang D, et al. Simulta-
taneous vs sequential initiation of therapy with indina-
-zovir, and zidovudine for HIV-1 infection: 100-
112. Herrington D, Bittner V, et al. Car-
diovascular disease outcomes during 6.8 years of hor-
monal therapy: Heart and Estrogen/progestin Replace-
ment Study follow-up (HERS II). JAMA. 2002;288:
49-57.
113. Grantham-McGregor SM, Powell CA, Walker SP,
Himes JH. Nutritional supplementation, psychosocial stimula-
tion, and mental development of stunted chil-
114. Ghana VAST Study Team. Vitamin A supplemen-
tation, psychosocial stimulation, and mental develop-
ment of stunted children in Ghana. Lancet. 1993;
342:7-12.
115. Sipe JC, Romine JS, Koziol JA, McMillan R, Zy-
roff J, Beutler E. Cladribine in treatment of chronic pro-
116. Karonga Prevention Trial Group. Randomised con-
trolled trial of single BCG, repeated BCG, or combined
BCG and killed Mycobacterium leprae vaccine for pre-
117. Waldo AL, Camm AJ, deKuylt H, et al; the
SWITF Investigators. Effect of d-sotalol on mortality in
patients with left ventricular dysfunction after re-
lian Tamoxifen Prevention Study. Prevention of breast cancer with tamoxifen: preliminary findings from the
119. The EPISTET Investigators. Randomised placebo-
controlled and balloon-angioplasty-controlled trial to assess safety of coronary stenting with use of platelet glyco-
120. CLIP Group (Cancer of the Liver Italian
Programme). Tamoxifen in treatment of hepatocel-
122. Negrin RS, Hauber DH, Nagler A, et al. Main-
tenance treatment of patients with myeloplastic syn-
123. Budman DR, Berry DA, Ciriricene CT, et al; the
Cancer and Leukemia Group B. Dose intensity and dose inte-
sity as determinants of outcome in the adjacent treat-
ment of breast cancer. J Natl Cancer Inst. 1998;90:1205-
1211.
124. Veronezi U, De Palo G, Marubini E, et al. Ran-
tomized trial of fenretinide to prevent second breast
malignancy in women with early breast cancer. J Natl
125. Rice GP, Filipi M, Comi C; Cladribine MRI Study
127. Creery D, Mikropanagas A. Sudden infant death
coids for group. Cochrane Database Syst Rev. 2004;1:
c000181.
129. Makhiouf AM, Al-Hussaini TK, Habib DM,
Maqarem MH. Second-trimester pregnancy termina-
tion: comparison of three different methods. J Obstet
131. Nalamothu BK, Shahjina KG, Saint S, et al. Ac-
eutocysteine effectiveness in preventing contrast-related re-
132. Grantham-McGregor SM, Walker SP, Chang SM,
Powell CA. Effects of early childhood supplementation with and without stimulation on later development in
therapy for the prevention and treatment of cortico-
steroid induced bone loss. J Rheumatol. 2000;27:2424-
2431.
135. Fawzi WW, Chalmers TC, Herrera MG, Mo-
steller F. Vitamin A supplementation and child mortal-
136. Specchia G, Scorsetti M, et al, Pediat-
ric AIDS Clinical Trials Group. A controlled trial of in-
travenous immune globulin in the prevention of seri-
ous bacterial infections in children receiving zidovudine for advanced human immunodeficiency virus
137. Lyman GH, Kuderer NM, Dijulbegovic B. Prophy-
lactic granulocyte colony-stimulating factor in pa-
138. Kundu K, Jolliffe R. Effect of the statistical signifi-
cance level that won't go away. JAMA. 1999;282:1341-1346.
139. Ioannidis JP, Cappelleri JC, Lau J. Issues in com-
140. Fleming TR, DeMets DL. Surrogate end points in
clinical trials: are we being misled? Ann Intern Med.
141. Dickerson K, Min YI. Publication bias: the prob-
lem that won't go away. Ann N Y Acad Sci. 1997:103:
135-146.
DR. Publication bias in clinical research. Lancet. 1991;
337:867-872.
143. Ioannidis JP. Effect of the statistical significance of
results on the timeliness of publication and publication of randomized efficacy trials. JAMA. 1998;279:281-286.
144. Wheatley K, Clayton D. Be skeptical about un-
expected large treatment effects: the case of an MRI
AML12 randomization. Control Clin Trials. 2003;24:66-
70.
vs, or instead of, clinical research: the case of eu-
146. DeAngelis C, Drazen JM, Frizelle FA, et al. Clini-
cal trial registration: a statement from the Interna-

CONTRADICTED AND INITIALLY STRONGER EFFECTS IN HIGHLY CITED CLINICAL RESEARCH

©2005 American Medical Association. All rights reserved.