An Outbreak of Multidrug-Resistant Acinetobacter baumannii Associated With Pulsatile Lavage Wound Treatment

Lisa L. Maragakis, MD
Sara E. Cosgrove, MD, MS
Xiaoyan Song, MD, MS
Denny Kim, MD, MPH
Patricia Rosenbaum, RN, CIC
Nancy Ciesla, PT, BS
Arjun Srinivasan, MD
Tracy Ross, BS
Karen Carroll, MD
Trish M. Perl, MD, MSc

MULTIDRUG-RESISTANT Acinetobacter baumannii (MDR-Ab) has emerged worldwide as an important health care–associated pathogen, causing infections such as ventilator-associated pneumonia, bloodstream infections, and wound infections. The organism can survive on environmental surfaces for months, making nosocomial transmission extremely difficult to prevent and control. Many Acinetobacter isolates demonstrate extensive resistance to antimicrobial agents, including carbapenems, which greatly complicates treatment of these infections. Previously reported outbreaks of MDR-Ab have frequently been associated with respiratory care equipment and humidifiers.

In October 2003, the Department of Hospital Epidemiology and Infection Control at Johns Hopkins Hospital became aware of a cluster of 5 patients infected or colonized with MDR-Ab. The pulsed-field gel electrophoresis analysis confirmed that the isolates were a single strain. The authors hypothesized that the outbreak was likely to be related to the pulsed-field gel electrophoresis analysis and from multiple surfaces in the wound care area. Six of 7 cases (86%) were treated with pulsatile lavage vs 4 of 28 controls (14%) (odds ratio, 36; 95% confidence interval, 2.8-1721; P<.001). These results confirm that pulsatile lavage was a significant risk factor for acquisition of multidrug-resistant A baumannii.

Conclusions Transmission was apparently caused by dissemination of multidrug-resistant A baumannii during the pulsatile lavage procedure, resulting in environmental contamination. Appropriate infection control precautions should be used during pulsatile lavage therapy and should be included in pulsatile lavage equipment labeling.

JAMA. 2004;292:3006-3011 www.jama.com

Author Affiliations: Division of Infectious Diseases, Department of Medicine (Drs Maragakis, Cosgrove, Carroll, and Perl), and Department of Pathology (Ms Ross and Dr Carroll), Johns Hopkins University School of Medicine, Departments of Hospital Epidemiology and Infection Control (Drs Maragakis, Cosgrove, Song, and Perl and Ms Rosenbaum) and Physical Medicine and Rehabilitation (Ms Ciesla), Johns Hopkins Hospital, and Department of Preventive Medicine, Johns Hopkins Bloomberg School of Public Health (Dr Kim), Baltimore, Md; Division of Healthcare Quality and Promotion, Centers for Disease Control and Prevention, Atlanta, Ga (Dr Srinivasan).

Corresponding Author: Lisa L. Maragakis, MD, Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, 600 N Wolfe St, Osler 425, Baltimore, MD 21287 (lmaraga1@jhmi.edu).
number of cases of MDR-Ab was approxi-
mately 5 times the usual rate (FIGURE 1) and the isolates were par-
ticularly resistant, susceptible only to colistin. The patients had different pri-
mary diagnoses and were located in various units throughout the hospital. Four of the 5 original cluster patients had wounds and 3 had received pulsatile lavage therapy, a water-based, high-pressure irrigation treatment with concurrent suction used for cleansing and debridement of wounds. The technique originated in the 1960s for use in the operating room and is now performed widely in hospitals, rehabilitation centers, outpatient clinics, and long-term care facilities. This is the first report of a nosocomial outbreak related to pulsatile lavage treatment.

METHODS

Setting

The Johns Hopkins Hospital is a 1000-
bed tertiary care hospital in Balti-
more, Md. Prior to this outbreak, physi-
thical therapists performed wound care, including pulsatile lavage, for inpa-
tients and outpatients in a single pro-
cedure room. The room was a large, open area with 3 whirlpools, 1 sink, and 2 stretchers. It contained curtains for patient privacy, wound care carts, and open supply shelves. There was minimal ventilation and high humidity.

Pulsatile Lavage Procedure

Pulsatile lavage treatment is used to de-
bride wounds of devitalized tissue and debris. Pulsatile lavage devices are class 2 devices, which are exempt from pre-
market notification or approval by the US Food and Drug Administration (FDA). A battery-powered device that re-
sembles a water gun is used to deliver pressurized sterile saline to the wound. A small shield at the tip of the device is placed in contact with the wound bed so that suction is created and splash is minimized. Tubing connects the device to ir-
rigation fluid and to a suction pump. The water gun, splash shield, and tubing are for single use and are disposable. In 2003, 2947 pulsatile lavage procedures were performed at Johns Hopkins Hospital.

Epidemiologic Investigation

Microbiology records were reviewed to iden-
tify cases and to define the base-
line rate of MDR-Ab prior to the out-
brea. A case was defined as any pa-
tient infected or colonized with MDR-Ab susceptible to no more than 1 class of antimicrobial agents, excluding colistin. The baseline rate of MDR-Ab for the 4 years prior to the outbreak was a mean of 2 cases per quar-
ter (range, 0-4). There were only 2 cases of MDR-Ab between January 2003 and the beginning of the outbreak in Sep-
tember 2003 (Figure 1). Medical re-
cords were reviewed, including paper and electronic charts, the microbiol-
ogy database, and physical therapy wound care records. The pulsatile la-
vage procedure was observed and mul-
tiple surfaces in the wound care room were cultured. Given prior reports of MDR-Ab outbreaks associated with me-
chanical ventilation, respiratory care re-
cords were also reviewed and respira-
tory care equipment was cultured.

Surveillance

After identifying pulsatile lavage therapy as a potential risk factor for transmis-
sion of MDR-Ab, certified letters were sent to all 58 patients who received pul-
satile lavage or whirlpool therapy in the wound care room from September 1 through October 31, 2003. Patients were asked to return for a surveillance wound culture. For patients who did not reply to the certified letter, at least 2 attempts were made to contact them by telephone.

Microbiologic Methods

Clinical cultures were performed us-
ing standard practices on routine me-
dia. Susceptibility testing was per-
formed by the agar dilution method. Environmental samples were cultured on brain-heart infusion plates supple-
mented with 5% sheep blood and genta-
tamicin at a concentration of 10 μg/

mL. Pulsed-field gel electrophoresis (PFGE) (Bio-Rad Gen Path, Hercules, Calif) was performed on all available isolates. DNA was digested with Smal and gels were analyzed with Molecu-
lar Analyst Fingerprinting Plus software (Bio-Rad, Hercules). Isolates were considered genetically related if their PFGE patterns differed by 3 or fewer bands.

Case-Control Study

We conducted a case-control study to assess risk factors for acquisition of the outbreak strain of MDR-Ab in our in-
stitution. The case definition was any patient who had the outbreak strain or unidentified strain of MDR-Ab, in a clinical culture taken at least 48 hours after admission, during an inpatient hospitalization between September 1 and October 31, 2003. This study defi-
nition did not include patients with strains other than the outbreak strain by PFGE or patients admitted to our in-
stitution already harboring MDR-Ab. Patients whose MDR-Ab was detected by surveillance culture during the epi-
demiologic investigation were not in-
cluded to avoid biasing the study to-
ward pulsatile lavage as a risk factor.

Controls were randomly selected from the list of inpatients without MDR-Ab who were seen for wound care consultation during the outbreak period. The ratio of controls to cases was 4 to 1. All controls had wounds and at least 1 clini-
cal culture of urine, sputum, wound, or
INFECTION ASSOCIATED WITH PULSATILE LAVAGE WOUND TREATMENT

Table 1. Case Summaries of 11 Patients Infected or Colonized With MDR-Ab Between September 1 and October 31, 2003

<table>
<thead>
<tr>
<th>Patient No./Sex/Age, y</th>
<th>Primary Diagnosis/Procedure</th>
<th>Infected/Colonized</th>
<th>Health Care Associated</th>
<th>Pulsatile Lavage</th>
<th>Mechanical Ventilation*</th>
<th>MDR-Ab Culture Sites</th>
<th>MDR-Ab Strain†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/M/46‡§</td>
<td>Solid organ transplant</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Blood, sputum, wound</td>
<td>A</td>
</tr>
<tr>
<td>2/F/79§</td>
<td>CABG</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Wound</td>
<td>A</td>
</tr>
<tr>
<td>3/M/59‡§</td>
<td>DM, ESRD</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Blood, sputum, wound</td>
<td>A</td>
</tr>
<tr>
<td>4/M/74</td>
<td>Sarcoma resection</td>
<td>Infected</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Wound</td>
<td>B</td>
</tr>
<tr>
<td>5/M/71</td>
<td>Stroke</td>
<td>Colonized</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Sputum</td>
<td>C</td>
</tr>
<tr>
<td>6/F/25¶</td>
<td>Paraplegia</td>
<td>Infected</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Urine</td>
<td>A</td>
</tr>
<tr>
<td>7/F/53</td>
<td>Abdominal hernia</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Wound</td>
<td>A</td>
</tr>
<tr>
<td>8/M/53‡§</td>
<td>DM, ESRD</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Blood, sputum, wound</td>
<td>A</td>
</tr>
<tr>
<td>9/M/57¶</td>
<td>HIV</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Wound</td>
<td>A</td>
</tr>
<tr>
<td>10/F/83§</td>
<td>CABG</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Wound</td>
<td>NA</td>
</tr>
<tr>
<td>11/M/24</td>
<td>Paraplegia</td>
<td>Infected</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Urine</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: CABG, coronary artery bypass graft surgery; DM, diabetes mellitus, ESRD, end-stage renal disease; HIV, human immunodeficiency virus; MDR-Ab, multidrug-resistant Acinetobacter baumannii; NA, isolate not available for analysis.

*Mechanical ventilation during the period September 1, 2003, to the date of the patient’s first culture that grew MDR-Ab.
†Strain A was the outbreak strain.
‡Patients who met case criteria.
§Patients receiving hemodialysis.
¶Patients who had been in nursing homes.

Figure 2. Outbreak Timeline Showing 11 Case Patients’ Pulsatile Lavage Treatments and Cultures That Grew MDR-Ab

This timeline depicts the 11 patients identified as infected or colonized with multidrug-resistant Acinetobacter baumannii (MDR-Ab) at Johns Hopkins Hospital during September and October 2003. Eight of the 11 patients had pulsatile lavage therapy, as indicated by the bars. Circles denote cultures that grew MDR-Ab. During the outbreak investigation, it was discovered retrospectively that patient 11 had a urine culture-positive for MDR-Ab on admission, but this strain of MDR-Ab was unconfirmed by pulsed-field gel electrophoresis analysis.

RESULTS

Epidemiologic Investigation

A total of 11 case patients infected or colonized with MDR-Ab were identified between September 1 and October 31, 2003 (Table 1 and Figure 2). This includes the 5 original cluster patients and 6 other patients who were identified during the outbreak investigation. The patients had different primary diagnoses and were located in various units throughout the hospital. Isolates of MDR-Ab were found in blood, sputum, urine, and wounds. All MDR-Ab isolates were susceptible to colistin but were otherwise either completely resistant or showed only intermediate susceptibility to amikacin. The mean age of case patients was 59 years (range, 24-83 years). One patient was culture-positive for MDR-Ab on admission, but this strain of MDR-Ab was unrelated to the outbreak strain by PFGE. Of the 10 patients who acquired the organism in the hospital, all had wounds and 8 had received pulsatile lavage treatment. Thirty-one (53%) of 58 wound care patients returned for surveillance cultures and 1 patient (2%) multivariate logistic regression was not performed because of small sample size. All statistical analyses were performed with Stata software, version 7 (Stata Corp, College Station, Tex).

Statistical Analysis

For the case-control study, we performed a 2-tailed Fisher exact test to calculate odds ratios (ORs), 95% confidence intervals (CIs), and P values. We used the Wilcoxon rank-sum test to compare group medians. With α = .05, the study had 70% or higher power to detect an absolute difference of 70% or higher between controls and cases, assuming a control proportion of 0.15.
had MDR-Ab grown from the surveillance culture.

Eight of the case patients had wound infections and 3 had both bloodstream infections and pneumonia. Three patients required admission to the intensive care unit for sepsis and respiratory distress, and 2 patient deaths were possibly related to their infections.

Isolates were available from 6 of the case patients who had undergone pulsatile lavage treatment and from 3 case patients who did not have pulsatile lavage. Pulsed-field gel electrophoresis of the isolates from all 6 patients who received pulsatile lavage demonstrated 1 identical strain of MDR-Ab that was distinct from isolates obtained from 2 patients who did not have pulsatile lavage (Figure 3). One patient who did not receive pulsatile lavage had the outbreak strain of MDR-Ab in her urine. No risk factor for transmission was identified for this patient. The disposable pulsatile lavage gun and suction canister insert grew the outbreak strain of MDR-Ab after being used to treat 1 of the case patients at the time of the outbreak investigation. Environmental cultures from a cleaned stretcher, the sink, and a supply shelf above the treatment area all grew the outbreak strain of MDR-Ab, as confirmed by PFGE (Figure 3).

Investigation revealed that a change in pulsatile lavage procedure had occurred approximately 2 months prior to the cluster of cases that brought the outbreak to our attention. As a cost-saving measure, the disposable suction canister inserts that were previously discarded after each patient was treated were changed once a day or when full.

Case-Control Study

Seven patients met the case definition of the case-control study. Of the 4 patients who did not meet the definition, 1 grew MDR-Ab within 48 hours of admission, 1 was detected by surveillance culture, and 2 had MDR-Ab strains different from the outbreak strain. The cases and controls were similar with respect to age, race, sex, smoking status, McCabe disease severity score, and mean number of cultures performed (Table 2). The mean number of hospital days was greater for the patients with MDR-Ab than for the controls (50 days vs 33 days); the difference was not statistically significant. Univariate analysis confirmed that pulsatile lavage was a significant risk factor for acquisition of MDR-Ab. Six (86%) of 7 cases vs 4 (14%) of 28 controls were treated with pulsatile lavage (OR, 36; 95% CI, 2.8-1721; P<.001). Prior residence in a nursing home was also a significant risk factor. Four (57%) of 7 cases vs 1 (4%) of 28 controls resided in a long-term care facility in the 6 months prior to admission (OR, 36; 95% CI, 2.2-1833;)

Figure 3. Results of Pulsed-Field Gel Electrophoresis of Available Isolates of MDR-Ab Obtained in September and October 2003

<table>
<thead>
<tr>
<th>Strain</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW Marker</td>
<td>MW Marker</td>
<td></td>
</tr>
<tr>
<td>Patient 1, Blood</td>
<td>Patient 2, Wound</td>
<td>Patient 3, Blood</td>
<td>Patient 4, Wound</td>
<td>Patient 5, ETS</td>
<td>Patient 6, Urine</td>
<td>Patient 7, Wound</td>
<td>Patient 8, Blood</td>
<td>Patient 9, Wound</td>
<td>Sink Top (Treatment Room)</td>
<td>Stretcher (Treatment Room)</td>
<td>Pulsatile Lavage Device</td>
<td></td>
</tr>
<tr>
<td>Pulsatile Lavage Device</td>
<td>Suction Canister</td>
<td></td>
</tr>
</tbody>
</table>

Strain A was isolated from blood, urine, sputum, or wound specimens from 6 patients who were treated with pulsatile lavage therapy and from multiple surfaces in the wound care treatment room. Strains B and C were isolated from sputum or wound specimens from 2 patients who were not treated with pulsatile lavage therapy. ETS indicates endotracheal suction. MDR-Ab, multidrug-resistant Acinetobacter baumannii; MW, molecular weight.

Table 2. Comparison of Selected Risk Factors for Infection or Colonization With Multidrug-Resistant Acinetobacter baumannii

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Cases (n = 7)</th>
<th>Controls (n = 28)</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD) age, y</td>
<td>59.4 (19.7)</td>
<td>56.4 (16.1)</td>
<td>.56</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>3 (43)</td>
<td>15 (54)</td>
<td>0.7 (0.1-4.7)</td>
<td>.69</td>
</tr>
<tr>
<td>White race</td>
<td>4 (57)</td>
<td>16 (57)</td>
<td>1.0 (0.1-7.2)</td>
<td>.99</td>
</tr>
<tr>
<td>Intensive care unit admission</td>
<td>3 (43)</td>
<td>9 (32)</td>
<td>1.6 (0.2-11.6)</td>
<td>.67</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>1 (14)</td>
<td>8 (29)</td>
<td>0.4 (0.01-4.5)</td>
<td>.65</td>
</tr>
<tr>
<td>Antimicrobial therapy</td>
<td>5 (71)</td>
<td>21 (75)</td>
<td>0.8 (0.1-10.7)</td>
<td>.99</td>
</tr>
<tr>
<td>Pulsatile lavage</td>
<td>6 (86)</td>
<td>4 (14)</td>
<td>36 (2.8-1721)</td>
<td><.001</td>
</tr>
<tr>
<td>Nursing home residence</td>
<td>4 (57)</td>
<td>1 (4)</td>
<td>36 (2.2-1833)</td>
<td>.003</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>3 (43)</td>
<td>3 (11)</td>
<td>6.3 (0.9-42.5)</td>
<td>.08</td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval.

©2004 American Medical Association. All rights reserved.
Infection Associated with Pulsatile Lavage Wound Treatment

P = .003). Three (43%) of 7 cases vs 3 (11%) of 28 controls received hemodialysis, which approached but did not achieve statistical significance (OR, 6.3; 95% CI, 0.9-42.5; P = .08). All other variables tested, including mechanical ventilation and administration of antimicrobial agents, were not significantly different between case and control patients (Table 2).

Termination of the Outbreak

All pulsatile lavage treatment was stopped on October 24, 2003. The outbreak was halted by aggressive infection control measures, including temporary closure of the wound care treatment room, thorough cleaning and disinfection of environmental surfaces, strict isolation of infected and colonized patients, and termination of pulsatile lavage wound care until renovation of the wound care area and procedural changes occurred. When pulsatile lavage resumed on November 18, treatments occurred in newly constructed private rooms and patients known to be colonized or infected with MDR-Ab were scheduled at the end of the day whenever possible. After these interventions, MDR-Ab cases remained slightly elevated in the final months of 2003; however, no further cases of the outbreak strain were detected. Follow-up environmental cultures of surfaces in the new private rooms constructed for pulsatile lavage treatment have been performed monthly for 11 months and none has grown MDR-Ab.

Comment

This report describes the first recognized nosocomial outbreak associated with pulsatile lavage wound care and identifies a novel mode of transmission for A. baumannii. Six (13%) of 46 patients treated with pulsatile lavage during the outbreak period were infected or colonized with a single strain of MDR-Ab that was also cultured from multiple environmental surfaces in the wound care room. Only 1 patient acquired the outbreak strain of MDR-Ab without known exposure to pulsatile lavage treatment. The attributable risk of acquisition of MDR-Ab in patients receiving pulsatile lavage therapy was approximately 12.4%. Prior to the outbreak, the manufacturer of our pulsatile lavage equipment did not include any infection control information in its product insert. Based on our findings in this outbreak, 1 equipment manufacturer added information on infection control measures to the product insert. However, other manufacturers of pulsatile lavage equipment are not currently required to include infection control information with their product.

The extensive resistance of the organism and the severity of the patient outcomes make this outbreak significant, though it involved a small number of patients. Three case patients required admission to the intensive care unit for sepsis, and MDR-Ab infections possibly contributed to 2 deaths. Our outbreak investigation identified a common procedure as a previously unrecognized means for transmission of a multidrug-resistant nosocomial pathogen. Although MDR-Ab was responsible for this outbreak, it is reasonable to hypothesize that other aquaphilic organisms such as Pseudomonas might be spread by this means.

The case-control study confirmed that pulsatile lavage was a significant risk factor for acquisition of MDR-Ab. The results must be interpreted with caution given the small sample size and wide 95% CIs. Case-control studies can demonstrate an association between factors such as pulsatile lavage therapy and acquisition of MDR-Ab but cannot lead to conclusions regarding causality. When taken with the results of the epidemiologic investigation, however, these data suggest a strong association between pulsatile lavage wound care and the acquisition of MDR-Ab in this outbreak.

The association of pulsatile lavage with this outbreak highlights the need for appropriate infection control measures when using this method of wound care. We hypothesize that MDR-Ab was disseminated during the pulsatile lavage treatments leading to contamination of the surrounding environmental surfaces. Two of the case patients in this outbreak presented with MDR-Ab pneumonia and sepsis, suggesting an inhalational route of exposure. The change in procedure allowing suction canister inserts to fill before replacing them may have played a role in transmission of the organism. It is likely that multiple factors contributed to the development of this outbreak, including simultaneous treatment of patients on adjacent stretchers, open supply shelves that make cleaning and disinfection difficult, and high room humidity from the whirlpools. The outbreak strain of MDR-Ab may have been introduced into this environment by one of the case patients or, possibly, by an unidentified patient.

Manufacturers of pulsatile lavage equipment note that proper technique requires close proximity of the device’s suction tip with the wound bed at all times. Practically speaking, however, uneven wound contour, momentary breaches in technique, or patients pulling away from the device will certainly lead to the chance for splash and environmental contamination during these procedures. Aerosolization during pulsatile lavage treatment was previously reported in a study in which organisms from wounds were recovered by air samplers at 3 ft and 8 ft from patients during the procedure. In addition, 2 recent published reports recognize that there is often splash during pulsatile lavage treatment and describe barrier precautions to reduce it.

Our findings emphasize that pulsatile lavage treatment must be performed under controlled circumstances with appropriate infection control measures in place. The Centers for Disease Control and Prevention (CDC) now recommend that health care workers performing pulsatile lavage procedures use appropriate infection control procedures to minimize aerosols and protect themselves and their patients from potentially infectious materials. Because of the risks of splash, health care workers performing pulsatile lavage should use personal protective equipment, includ-
ing fluid-resistant gowns, gloves, surgical masks, eye protection, and shoe and hair covers. In addition, patients receiving pulsatile lavage treatment should wear surgical masks and all intravenous lines and other wounds must be covered during the treatment. The procedure should be performed in a private room with easily washable surfaces, only essential equipment in the room, and no open supply shelves. Thorough cleaning and disinfection of the room must occur after each procedure and at the end of the day. As with any medical procedure, all staff performing pulsatile lavage treatment should be thoroughly trained in proper technique for use of the device.

In addition to pulsatile lavage, our case-control study found that residence in a nursing home within the previous 6 months was a significant risk factor for acquisition of MDR-Ab. Antimicrobial-resistant pathogens are known to be present in long-term care facilities. The 4 case patients who had recent residence in a nursing home were in 4 different facilities, and it is unclear what role nursing home residence played in this outbreak. Because wound care, including pulsatile lavage, is frequently performed in long-term care facilities, practitioners in these facilities must be cognizant of appropriate infection control procedures to help prevent transmission of resistant organisms.

Finally, this outbreak highlights the importance of careful evaluation of the infection control implications of new therapies, existing therapies used in a new way, and cost-saving procedural changes. Manufacturers must ensure that product labeling for new medical devices includes infection control information and recommendations on appropriate precautions, proper storage, cleaning and disinfection, and potential infectious risks. Pulsatile lavage is an emerging technology that is being used with increasing frequency throughout the United States in a variety of inpatient, long-term care, and outpatient settings. Infection control information and recommendations must be disseminated to the health care workers who perform these procedures in diverse settings.

Author Contributions: Dr Maragakis had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Maragakis, Cosgrove, Song, Kim, Rosenbaum, Srinivasan, Perl. Acquisition of data: Maragakis, Kim, Rosenbaum, Ciesla, Ross, Carroll.

REFERENCES