The poor long-term efficacy of conventional obesity treatment has promoted the notion of a body weight set point, more recently termed settling point. According to this concept, deviations in body weight from baseline elicit physiological adaptations that antagonize further weight change. During energy restriction, humans and experimental animals have increased hunger, decreased thyroid hormone levels, and down-regulation of reproductive and growth functions, changes that increase energy intake and lower energy expenditure. To examine this phenomenon, Leibel et al underfed or overfed participants who were lean or obese to obtain an approximate 10% decrease or increase in body weight from baseline. Resting energy expenditure (REE) and total energy expenditure relative to fat-free body mass declined following weight reduction, whereas total energy expenditure increased following weight gain.

A decline in REE and associated neuroendocrine changes have been consistently reported during active weight loss, although controversy exists as to whether these adaptations are permanent or transient. In any event, defended body weight level is evidently not determined by endogenous mechanisms exclusively, as demonstrated by the increasing mean body mass index (BMI, calculated as weight in kilograms divided by the square of height in meters) among genetically stable populations observed in recent years. Thus, body weight settling point may best be conceptualized as representing the integrated influences of numerous genetic, behavioral, and environmental factors.

Previously, the novel dietary factor glycemic load has been proposed to play a role in body weight regulation based on experimental and theoretical grounds. Glycemic load (glycemic index and the amount of carbohydrate consumed) has been shown to affect insulin resistance, triglyceride levels, and markers of inflammation. Reduction in glycemic load may aid in the prevention or treatment of obesity, cardiovascular disease, and diabetes mellitus.

Context Weight loss elicits physiological adaptations relating to energy intake and expenditure that antagonize ongoing weight loss.

Objective To test whether dietary composition affects the physiological adaptations to weight loss, as assessed by resting energy expenditure.

Design, Study, and Participants A randomized parallel-design study of 39 overweight or obese young adults aged 18 to 40 years who received an energy-restricted diet, either low–glycemic load or low-fat. Participants were studied in the General Clinical Research Centers of the Brigham and Women’s Hospital and the Children’s Hospital, Boston, Mass, before and after 10% weight loss. The study was conducted from January 4, 2001, to May 6, 2003.

Main Outcome Measures Resting energy expenditure measured in the fasting state by indirect calorimetry, body composition by dual-energy x-ray absorptiometry, cardiovascular disease risk factors, and self-reported hunger.

Results Resting energy expenditure decreased less with the low–glycemic load diet than with the low-fat diet, expressed in absolute terms (mean [SE], 96 [24] vs 176 [27] kcal/d; \(P = .04 \)) or as a proportion (5.9% [1.5%] vs 10.6% [1.7%]; \(P = .05 \)). Participants receiving the low–glycemic load diet reported less hunger than those receiving the low-fat diet (\(P = .04 \)). Insulin resistance (\(P = .01 \)), serum triglycerides (\(P = .01 \)), C-reactive protein (\(P = .03 \)), and blood pressure (\(P = .07 \) for both systolic and diastolic) improved more with the low–glycemic load diet. Changes in body composition (fat and lean mass) in both groups were very similar (\(P = .85 \) and \(P = .45 \), respectively).

Conclusions Changes in dietary composition within prevailing norms can affect physiological adaptations that defend body weight. Reduction in glycemic load may aid in the prevention or treatment of obesity, cardiovascular disease, and diabetes mellitus.
INDEX (carbohydrate amount) is a validated measure of the increase of blood glucose following a meal. A high–glycemic load diet appears to elicit hormonal changes that limit availability of metabolic fuels in the postprandial period, stimulating hunger and voluntary food intake. Several short-term or small-scale studies have reported increased body weight and/or fat loss on low–glycemic index/glycemic load diets compared with control diets, although the clinical relevance of these findings remains the subject of debate. Recently, we examined the effects that glycemic load has on REE in 10 overweight young men. After 1 week consuming energy-restricted diets providing 50% of predicted total energy requirements, REE decreased by 10.5% on the high–glycemic load diet compared with 4.6% on the low–glycemic load diet ($P = .04$).

The goal of this study was to determine whether dietary composition can influence the physiological adaptations of a weight-reducing diet, as assessed by REE. To test this hypothesis, we studied 2 energy-restricted diets with large differences in glycemic load. Because glycemic load has been linked to risk for heart disease in epidemiological studies, we also examined several conventional and novel cardiovascular disease risk factors as secondary endpoints.

METHODS

Overview

We randomly assigned 46 participants to low–glycemic load or low-fat diet groups using a parallel-design study, which was performed at the General Clinical Research Centers of the Brigham and Women’s Hospital and the Children’s Hospital in Boston, Mass, and conducted from January 4, 2001, to May 6, 2003. The participants were given a standard weight–maintaining diet during a 9-day run-in period and then were admitted to a metabolic unit for 3 days to obtain baseline measurements. The food preparation, inpatient stays, and most data collection were performed at the Brigham and Women’s Hospital, while the body composition analysis and laboratory assay of C-reactive protein were performed at the Children’s Hospital. At discharge, participants began the experimental or control diets, providing 60% of predicted energy requirements. After achieving a 10% reduction in body weight, participants were readmitted for 5 days to obtain final measurements of study end points (during active weight loss on the low-glycemic load and low-fat diets). All foods, for both inpatient and outpatient phases, were prepared in a metabolic kitchen. Ethics approval for human subjects research was provided by institutional review boards at both hospitals. All participants gave written informed consent before enrollment.

Participants

Participants were recruited primarily through posted fliers and newspaper advertisements in the Boston metropolitan area. Inclusion criteria were assessed by telephone, an inperson interview, and a physician-conducted physical examination. Participants meeting the following criteria were included in the study: aged between 18 and 40 years; BMI of at least 27 and weight of less than 135 kg (<300 lb); change in body weight of less than 10% during the past year; good general health; no medical conditions or medications that might affect body weight, appetite, or energy expenditure; nonsmoker; not regularly engaged in heavy/vigorous physical activities; normal laboratory screening test results, including complete blood cell count, serum electrolytes, thyroid-stimulating hormone, blood glucose, glycosylated hemoglobin, urinalysis, and liver functions (alanine aminotransferase up to twice normal limit, suggestive of fatty liver, acceptable); not currently following a special diet; no history of an eating disorder; no allergies or aversions to foods on the study menu; not taking dietary supplements; willing to abstain from alcoholic consumption for duration of study; and able to come to research unit on a daily basis to obtain study foods. In addition, the following inclusion criteria applied to women: not pregnant during the last year, no plans to become pregnant in the next year, not lactating, and not taking birth control pills. To characterize the diversity of the participant population, race/ethnicity was classified by the participants according to investigator-defined options. All participants were paid US $1500 on completion of the study.

We assessed 67 individuals for eligibility; 46 were enrolled in the study and randomly assigned to 1 of 2 diet groups ($n = 23$ in both the low–glycemic load and low-fat diet groups) (FIGURE 1). One participant from the low–glycemic load group and 6 from the low-fat group did not complete the study, for an overall retention rate of 85%. Five of these noncompleters (1 in low–glycemic load group and 4 in low-fat group) did not comply with the intervention as evidenced by inability to achieve the target weight loss goal of 2.5% weight loss per month despite intensive behavioral counseling by the dietitians. One participant (low-fat group) dropped out.
of the study due to work-related scheduling difficulties. One additional participant (low-fat group) developed an acute febrile illness with vomiting during the post-weight loss admission. The characteristics of the remaining participants are shown in Table 1. The 7 noncompleters did not differ from the completers in age (mean [SD], 30.5 [5.76] years for completers vs 33.1 [5.90] years for noncompleters; P=.26) or in REE (1509 [240] vs 1567 [347] kcal/d; P=.58) but the noncompleters did have higher baseline BMI (33.2 [4.59] vs 42.3 [6.03]; P<.001).

Diets

Table 2 lists the macronutrient and micronutrient composition of the run-in, low–glycemic load, and low-fat diet groups, and Table 3 lists a representative day’s menu from the low–glycemic load and low-fat groups. All participants received the same run-in diet before and during the first inpatient admission. This diet, resembling a “typical” US diet,19 was intended to stabilize body weight and provide the same nutrient profile to participants in both groups before collection of baseline clinical end points. The low-fat diet was low in fat, high in carbohydrate and glycemic load, and generally consistent with National Cholesterol Education Program guidelines for a healthy diet.20 This diet satisfied recommendations for servings of whole grain products, fruits and vegetables, and saturated fat and cholesterol. The low–glycemic load diet was designed to be low in glycemic load as possible, while providing more than ample carbohydrate to prevent ketosis. Glycemic load was reduced by modifications of both the amount and type of carbohydrate. Thus, some high-glycemic index carbohydrate in the low-fat diet (eg, conventional bread, instant oatmeal, corn) was replaced with food that had other macronutrients (eg, cheese, soy, vegetable oil) or a low glycemic index (eg, whole kernel bread, steel-cut oats, pasta). Mean daily predicted glycemic load was calculated as grams of available carbohydrate × glycemic index (using white bread as 100%) and summed over all foods.

Total energy intake for the low–glycemic load and low-fat groups was 60% of energy requirements, with a minimum of 1100 kcal/d. We calculated energy requirement from REE and an activity factor.21 Resting energy expenditure was determined before beginning the di-

Table 1. Baseline Characteristics of the Patients by Dietary Treatment Group

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Low-Fat Diet Group</th>
<th>Low–Glycemic Load Diet Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>32.6 (4.3)</td>
<td>28.8 (6.3)</td>
</tr>
<tr>
<td>Women, No. (%)</td>
<td>13 (76.5)</td>
<td>17 (77.3)</td>
</tr>
<tr>
<td>Race, No. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>8 (47.0)</td>
<td>13 (69.1)</td>
</tr>
<tr>
<td>Black</td>
<td>5 (29.4)</td>
<td>4 (18.2)</td>
</tr>
<tr>
<td>Latino</td>
<td>3 (17.6)</td>
<td>4 (18.2)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (6.0)</td>
<td>1 (4.5)</td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>92.2 (15.4)</td>
<td>91.0 (13.6)</td>
</tr>
<tr>
<td>Body fat, %</td>
<td>38.4 (6.2)</td>
<td>39.4 (7.1)</td>
</tr>
<tr>
<td>REE, kcal/d</td>
<td>1513 (287)</td>
<td>1507 (203)</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>88.7 (3.7)</td>
<td>88.9 (6.2)</td>
</tr>
<tr>
<td>Fasting insulin, µIU/mL</td>
<td>6.6 (3.9)</td>
<td>6.8 (3.5)</td>
</tr>
<tr>
<td>Serum levels, mg/dL†</td>
<td>92.4 (29.9)</td>
<td>78.3 (32.5)</td>
</tr>
<tr>
<td>Fasting triglycerides</td>
<td>49.4 (14.8)</td>
<td>46.9 (9.1)</td>
</tr>
<tr>
<td>HDL-C</td>
<td>124.3 (32.7)</td>
<td>138.7 (39.2)</td>
</tr>
<tr>
<td>LDL-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood pressure, mm Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>107 (8.0)</td>
<td>110 (14.2)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>68 (6.2)</td>
<td>69 (8.7)</td>
</tr>
<tr>
<td>C-reactive protein, mg/dL</td>
<td>0.19 (0.22)</td>
<td>0.28 (0.30)</td>
</tr>
</tbody>
</table>

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; REE, resting energy expenditure.

Table 2. Composition of the Average Run-in, Low-Fat, and Low–Glycemic Load Diet Groups

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Run-in Diet (N=39)</th>
<th>Low-Fat Diet Group (n = 17)</th>
<th>Low–Glycemic Load Diet Group (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative energy, % of energy needs</td>
<td>100</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Standard energy level, kcal/d*</td>
<td>2600</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Glycemic index†</td>
<td>89</td>
<td>82</td>
<td>50</td>
</tr>
<tr>
<td>Glycemic load‡</td>
<td>287</td>
<td>205</td>
<td>82</td>
</tr>
<tr>
<td>Carbohydrate, % total kcal</td>
<td>49</td>
<td>65</td>
<td>43</td>
</tr>
<tr>
<td>Protein, % total kcal</td>
<td>14</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>Fat, % total kcal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Polyunsaturated</td>
<td>7</td>
<td>4.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Monounsaturated</td>
<td>13</td>
<td>6.1</td>
<td>9.7</td>
</tr>
<tr>
<td>Saturated</td>
<td>16</td>
<td>5.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Cholesterol, mg/d</td>
<td>233</td>
<td>166</td>
<td>257</td>
</tr>
<tr>
<td>Dietary fiber, g/d</td>
<td>13</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>Calcium, mg</td>
<td>527</td>
<td>633</td>
<td>930</td>
</tr>
<tr>
<td>Magnesium, mg</td>
<td>205</td>
<td>272</td>
<td>298</td>
</tr>
<tr>
<td>Potassium, mg</td>
<td>2051</td>
<td>2476</td>
<td>2666</td>
</tr>
<tr>
<td>Sodium, mg</td>
<td>3503</td>
<td>2072</td>
<td>2627</td>
</tr>
</tbody>
</table>

*Energy level varied by study participant depending on individual energy needs, as described in the “Methods” section.
†Calculated as the weighted average glycemic index of all the carbohydrate-containing foods in the diet.
‡Calculated as each food’s carbohydrate amount (grams) × the respective glycemic index value and divided by 100, then summed over all foods from each menu.
ets using the Harris Benedict equation and during the first inpatient stay by indirect calorimetry. For most participants, these methods yielded results within 10% and the value obtained from the Harris Benedict equation was used throughout the study; for 3 participants, energy requirements were adjusted within the first week of the weight loss diet according to data obtained by indirect calorimetry.

For the run-in diet, we created a 3-day menu cycle, and for the low-glycemic load and low-fat diet groups, a 7-day menu cycle (calculated with Food Processor version 7.9, ESHA Research, Salem, Ore). Percentage of calories at meals was distributed as 25% breakfast, 30% lunch, 30% dinner, and 15% snack. The macronutrient ratio for each meal was similar within each diet. Investigators and staff participated in extensive quality control and taste testing procedures until all meals for low-glycemic load and low-fat groups were of acceptable appeal with respect to appearance and palatability. All recipes were standardized for production consistency and individual foods were weighed to within 0.5 g. Care was taken in preparing foods to minimize changes that might affect glycemic index, such as cooking times, reheating, freezing, or overripening.

Table 3. Sample Menus for the Low-Fat and Low–Glycemic Load Diet Groups

<table>
<thead>
<tr>
<th></th>
<th>Low-Fat Diet Group</th>
<th>Glycemic Index</th>
<th>Glycemic Load</th>
<th>Low–Glycemic Load Diet Group</th>
<th>Glycemic Index</th>
<th>Glycemic Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instant oatmeal</td>
<td>48.6</td>
<td>117</td>
<td>30.9</td>
<td>Steel-cut oats</td>
<td>22.4</td>
<td>50</td>
</tr>
<tr>
<td>Dextrose powder</td>
<td>4.5</td>
<td>141</td>
<td>6.2</td>
<td>Fructose</td>
<td>5.1</td>
<td>27</td>
</tr>
<tr>
<td>Skim milk (low lactose)</td>
<td>106.9</td>
<td>60</td>
<td>3.1</td>
<td>2% Milk</td>
<td>118.2</td>
<td>42</td>
</tr>
<tr>
<td>Raisins</td>
<td>14.9</td>
<td>91</td>
<td>10.7</td>
<td>Blueberries</td>
<td>41.6</td>
<td>57</td>
</tr>
<tr>
<td>Turkey sausage links</td>
<td>37.4</td>
<td>0</td>
<td>0</td>
<td>Soy sausage links</td>
<td>65.7</td>
<td>20</td>
</tr>
<tr>
<td>Butter</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>Half & half cream</td>
<td>2.5</td>
<td>38</td>
</tr>
<tr>
<td>Orange juice</td>
<td>119.6</td>
<td>81</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grapefruit juice</td>
<td>93.4</td>
<td>69</td>
<td>5.8</td>
<td>Grapefruit sections</td>
<td>109.4</td>
<td>36</td>
</tr>
<tr>
<td>Chicken breast meat</td>
<td>26.2</td>
<td>0</td>
<td>0</td>
<td>Chicken breast meat</td>
<td>51.1</td>
<td>0</td>
</tr>
<tr>
<td>Refried beans</td>
<td>59.8</td>
<td>64</td>
<td>5.4</td>
<td>Three-bean salad</td>
<td>109.4</td>
<td>68</td>
</tr>
<tr>
<td>Tomato salsa</td>
<td>37.4</td>
<td>54</td>
<td>2.0</td>
<td>Cracked wheat bread</td>
<td>19.0</td>
<td>79</td>
</tr>
<tr>
<td>Yellow corn kernels</td>
<td>62.0</td>
<td>67</td>
<td>8.6</td>
<td>2% Milk</td>
<td>109.4</td>
<td>42</td>
</tr>
<tr>
<td>Tortilla chips</td>
<td>28.4</td>
<td>97</td>
<td>23.3</td>
<td>Low–glycemic index custard</td>
<td>57.6</td>
<td>28</td>
</tr>
<tr>
<td>High–glycemic index custard</td>
<td>86.0</td>
<td>85</td>
<td>13.6</td>
<td>Butter</td>
<td>2.9</td>
<td>0</td>
</tr>
<tr>
<td>Butter</td>
<td>5.2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White tuna</td>
<td>38.9</td>
<td>0</td>
<td>0</td>
<td>White tuna</td>
<td>37.9</td>
<td>0</td>
</tr>
<tr>
<td>Whole wheat bread</td>
<td>41.9</td>
<td>101</td>
<td>19.5</td>
<td>Three-grain bread</td>
<td>82.4</td>
<td>58</td>
</tr>
<tr>
<td>Light mayonnaise</td>
<td>11.2</td>
<td>0</td>
<td>0</td>
<td>Lentil walnut salad</td>
<td>100.6</td>
<td>41</td>
</tr>
<tr>
<td>Iceberg lettuce</td>
<td>26.2</td>
<td>0</td>
<td>0</td>
<td>Light mayonnaise</td>
<td>10.2</td>
<td>0</td>
</tr>
<tr>
<td>Tomato slices</td>
<td>26.2</td>
<td>0</td>
<td>0</td>
<td>2% Milk</td>
<td>81.7</td>
<td>42</td>
</tr>
<tr>
<td>Couscous with broccoli</td>
<td>183.1</td>
<td>83</td>
<td>26.4</td>
<td>1% Cottage cheese</td>
<td>78.0</td>
<td>34</td>
</tr>
<tr>
<td>Peaches, syrup</td>
<td>112.1</td>
<td>83</td>
<td>18.6</td>
<td>Peaches in juice</td>
<td>54.7</td>
<td>54</td>
</tr>
<tr>
<td>Snack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yogurt, nonfat</td>
<td>164.4</td>
<td>34</td>
<td>5.9</td>
<td>Yogurt, nonfat</td>
<td>122.5</td>
<td>34</td>
</tr>
<tr>
<td>Graham crackers</td>
<td>14.9</td>
<td>84</td>
<td>9.6</td>
<td>Peanuts</td>
<td>8.8</td>
<td>21</td>
</tr>
<tr>
<td>Peanut butter, reduced fat</td>
<td>9.0</td>
<td>55</td>
<td>1.6</td>
<td>Soybean nuts</td>
<td>20.4</td>
<td>20</td>
</tr>
<tr>
<td>Grapes</td>
<td>6.8</td>
<td>66</td>
<td>4.0</td>
<td>Strawberries</td>
<td>43.8</td>
<td>57</td>
</tr>
</tbody>
</table>

*The mean glycemic index (for the day shown) for the low-fat diet group was 83 and for the low–glycemic load diet group, 47; the total glycemic load (for the day shown) for the low-fat diet group was 206 and for the low–glycemic load diet group, 76. Data for entire diets are shown in Table 2.
were allowed to consume selected non-
caloric beverages ad libitum and caffein-
ated beverages up to 3 servings per day,
but were not allowed any alcoholic
drinks. To minimize the likelihood of
micronutrient deficiencies or marked
micronutrient differences between the
low–glycemic load and low-fat diet
group, each participant was provided a
daily multivitamin.

Emergency meals were provided for
use in the event of unexpected situa-
tions (eg, severe weather) that might pre-
vent participants from coming to the on-
site meal. Emergency bars consistent
with diet assignment (low–glycemic load
diet: apple cinnamon crunch [Zone Per-
tect, The ZonePerfect Nutrition Co, Co-
lumbus, Ohio]; low-fat diet: apple cin-
namon [PowerBar Performance,
PowerBar, Berkeley, Calif]) were also
provided to participants in the event of
emergency hunger, to minimize devia-
tions from dietary prescription.

The low–glycemic load and low-fat di-
et was designed to produce 10% weight
loss during a 6- to 10-week period if no
other foods were consumed. We pro-
vided the participants with daily logs for
recording instances of nonadherence to
the diet, as well as any adverse effects,
hunger levels, or exercise bouts. This in-
formation was used in conjunction with
changes in body weight to evaluate ad-
herence on an ongoing basis through-
out the trial. The dietitians provided be-
havioral support and encouragement on
a daily basis, and special attention was
given to the few participants whose
weight loss did not meet expectations.

Data Collection

Before enrollment, height and weight
measurements were performed by a
calibrated balance beam scale and
physical activity level was assessed us-
ing a modified version of the Seven-
Day Physical Activity Question-
naire.22 Body composition (fat and lean
mass) was measured before beginning
the weight-reducing diet and again af-
after weight loss by dual-energy x-ray ab-
sorptiometry using Hologic instrumen-
tation (Model QDR 4500, Hologic,
Waltham, Mass).

During the outpatient run-in period
before the baseline admission, and dur-
ing the outpatient weight loss phase be-
tween clinic admissions, participants ar-
ived in clinic at noon for measurement of
body weight to complete a daily ques-
tionnaire and eat the lunch meal. Daily
body weight was measured before the
lunch meal, with participants wearing
light clothing, shoes removed, and pock-
et emptied. Daily weight measure-
ments were used to track the progress of
the participants toward their goal of 10%
weight loss, and served as the criterion
measure for dietary adherence. In re-
ponse to the question, “How hungry
have you been over the past 24 hours?”
which was asked before lunch, partici-
pants circled a number from 1 to 10, with
1 corresponding to “not hungry at all”
and 10 corresponding to “extremely hun-
gry.” In response to the question, “How
hungry are you right now?” which was
asked before lunch, participants made a
single vertical mark on a 10-cm line an-
chored to the left by the text “not hun-
gry at all” and on the right by the text
“extremely hungry.” A more in-depth
questionnaire was completed weekly to
assess adverse effects and medical
problems.

Participants were admitted to the
General Clinical Research Center as in-
patients at baseline and after achiev-
ing 10% weight loss. When possible, ad-
missions for women were scheduled
during the same menstrual cycle phase
(follicular) to minimize potential con-
 founding of metabolic end points. On
3 mornings of the admission, partici-
pants were awakened by a nurse be-
tween 6:00 and 6:30 AM. The partici-
pants were instructed to empty their
bladder and then were weighed (al-
ways with the same scale) wearing a
light hospital gown and no footwear.
Subsequently, REE was measured by indi-
direct calorimetry (Deltatrac I, Sensor-
Medics Corp, Yorba Linda, Calif) with
participants awake and lying quietly in
bed. Room temperature was main-
tained at a constant level for partici-
pat comfort, and lighting and noise
were kept to a minimum during calo-
rimetry. The calorimeter barometer and

gas analyzers were calibrated immedi-
ately before each test according to rec-
ommendations by the manufacturer.
For each of the 3 days, REE was com-
pared as the mean energy expenditure
value of minutes 11 through 30. The
mean of the 3 daily values was then
taken as the best REE estimate for each
participant (day-to-day coefficient of
variation [CV], 5.6% [84 kcal] at base-
line and 4.1% [54 kcal] posttreatment).

Blood pressure (BP) was measured and
blood samples were obtained following
calorimetry but before the breakfast meal,
with participants in the fasting state.
Blood pressure was obtained in the right
arm after participants were seated qui-
etly for 5 minutes with feet flat on the
floor. Three BP readings were taken by
a nurse with an automated unit (Dina-
map, Criticon Inc, Tampa, Fla). The first
reading was disregarded and the sec-
ond 2 readings were averaged. Blood
was drawn from the antecubital vein into
plain vacutainers and centrifuged within
30 minutes, then the serum was stored
in cryovials at −80°C until the assays were
performed in batches. Pre–weight loss
and post–weight loss samples for each
patient were included in the same as-
say run to avoid interassay variability
within participants. Blood was drawn in
the fasting state on 3 successive morn-
ings for glucose and insulin and on 2
mornings (first and third) for lipids
and C-reactive protein. Assay results and
BP for these multiple days were aver-
aged within person to minimize intra-
individual variability.

To describe the effect of the 2 treat-
ment meals (breakfast) on postpran-
dial blood glucose and insulin, we
sampled blood via an indwelling cath-
er in the antecubital vein every 30
minutes for 3 hours following the meal
(on the last day of the inpatient stay. The
incremental areas under the curve for
insulin and insulin were calculated by
the trapezoidal rule.

All secondary end points were ob-
tained from all completers, with the
exception of serum lipids, which were
measured in the first 25 participants.
An ACE hexokinase assay (Alfa Wass-
erman, West Caldwell, NJ) with a within-
assay CV of less than 1% was used for serum glucose. The Beckman ultrasensitive immunoassay (Fullerton, Calif) was used for insulin (CV, approximately 2%). Serum C-reactive protein concentration was measured on a highsensitivity immunoturbidimetric assay on a Hitachi 911 analyzer (Roche Diagnostics, Indianapolis, Ind) with reagents and calibrators from Denka Seiken (Niigata, Japan) (CV, approximately 2%). An automated Olympus analyzer (Melville, NY) was used to measure total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels (CV, approximately 1%). Low-density lipoprotein cholesterol was calculated by the Friedewald formula.24 The homeostasis model for insulin resistance was calculated as glucose (mmol/L) × insulin (µIU/mL) divided by 22.5.25

Randomization, Masking, and Statistical Analysis

Before participant enrollment, dietary treatment group (low–glycemic load vs low-fat) sequence was randomly generated by computer. Randomization was blocked by sex. Envelopes were prepared separately for male and female participants, numbered sequentially beginning with 1, enclosed with dietary group assignment, and sealed until randomization. During the baseline admission before weight loss, the envelope corresponding to the participant’s sex and enrollment number was opened by the bionutrition manager of the General Clinical Research Center. Only the dietary staff was privy to the participant–treatment assignments. Study personnel who measured the main process measure (body weight) and the main end point (REE) were masked to the diet group assignment of the participants, and these data were collected in an objective fashion (eg, digital reading from an electronic instrument). Other personnel could not be masked in this fashion because of obvious differences in meal appearance. Participants also could not be masked, although they were not informed of the study’s hypotheses.

We used general linear models (SAS PROC GLM, SAS Institute Inc, Cary, NC) to test the effect of dietary treatment (independent variable) on change in REE and cardiovascular disease risk factors (dependent variables). We adjusted end points for baseline values using analysis of covariance, as recommended by Laird,26 to avoid potential bias that might result if the magnitude of change depended on starting point. Additional analyses of posttreatment data, rather than change or percent change data, adjusted for baseline yielded similar results in most cases. Although we also included sex as a covariate in the models, we were unable to test treatment × sex interactions because only 9 men were enrolled in the study. Results are presented as adjusted means (SE), with statistical significance set at P ≤ .05.

Because our goal was to compare the effect of these diets on the metabolic adaptations with 10% weight loss, we did not attempt to assess follow-up outcomes in the 7 noncompleters. We have no reason to believe that the noncompleters would differ from the completers in any way that would bias our primary end point in the hypothesized direction. If any bias did exist, we speculate that individuals with the greatest decrease in REE would be less likely to complete the study, an effect that would favor the null hypothesis, as there were more noncompleters in the low-fat group than in the low–glycemic load group. However, to address this issue in intention-to-treat models, we used 2 different strategies to impute REE change scores for the noncompleters: 14% decrease in REE as reported by Leibel et al6 following 10% weight loss in obese participants, and 8.3% decrease in REE that was equal to the overall mean response from the 39 completers.

Sample size for the study was based on the mean (SD) difference between treatments in a previous study (~51 [74] kcal/d for low–glycemic index and ~175 [146] kcal/d for high–glycemic index).10 Forty-six participants (23 per group) were estimated to provide 80% power to detect a difference between diets in REE of 125 kcal/d with α = .05.

RESULTS

The 2 weight loss diets differed as intended in their effect on postprandial glycemia and insulinemia. Incremental area under the curves for glucose (mean [SE], 2706 [394] vs 1070 [336] mg/dL per minute, P = .003) and insulin (5381 [859] vs 2044 [733] µIU/mL per minute, P = .003) were more than 2-fold greater for test meals from the low-fat vs low–glycemic load diet groups, respectively.

Per study design, all participants who completed the protocol lost approximately 10% of their initial body weight (Figure 2). The mean (SE) time between the baseline and post–weight loss clinic visits was 69.4 (3.8) days for low-fat and 65.2 (3.3) days for low–glycemic load groups (P = .41 for treatment effect). Individual rates of weight loss were nonsignificantly greater in the low–glycemic load compared with the low-fat groups (1.09 [0.05] vs 0.99
[0.05] kg/wk, \(P = .19 \)). Changes in body weight and composition in both groups were very similar (TABLE 4). We observed no difference in physical activity, based on daily exercise logs describing type, frequency, and duration, during the course of the trial between the 2 groups (101 [9.1] vs 94 [10.4] min/wk for low–glycemic load and low-fat, respectively, \(P = .64 \)).

Resting energy expenditure decreased less in the low–glycemic load group compared with low-fat group following weight loss, whether expressed in absolute terms (mean [SE], 96 [24] vs 176 [27] kcal/d, \(P = .04 \)) (FIGURE 3) or as a proportion (5.9% [1.5%] vs 10.6% [1.7%], \(P = .05 \)). These findings were not materially affected by adjustment for baseline BMI, body composition, or time to achieve target weight loss. Intention-to-treat analyses based on imputing values for the 7 noncompleters did not materially alter these findings (\(P \leq .05 \) for both models).

Participants in the low–glycemic load group reported less hunger than those in the low-fat group in response to the question, asked each day before lunch, “How hungry have you been over the past 24 hours?” (mean [SD], 3.3 [0.28] vs 4.2 [0.3] units; \(P = .04 \)). A nonsignificant difference in the same direction was observed in response to the question, “How hungry are you right now?” (mean [SD], 3.6 [0.33] vs 4.5 [0.38] units; \(P = .10 \)).

Effects of dietary treatment on measures of cardiovascular disease risk with weight loss are shown in TABLE 5. Insulin resistance, as assessed by homeostasis model assessment (HOMA) score, decreased by more than twice as much with weight loss in the low–glycemic load vs the low-fat group (\(P = .01 \)). Serum concentrations of triglyceride levels also decreased more in the low–glycemic load vs the low-fat group (\(P = .01 \)). No group differences were observed for changes in low-density lipoprotein or high-density lipoprotein cholesterol with weight loss. C-reactive protein declined by nearly 50% with weight loss in the low–glycemic load group but remained essentially unchanged in the low-fat group (\(P = .03 \) for dietary treatment effect). There was a trend toward larger decrease in both systolic (\(P = .07 \)) and diastolic (\(P = .07 \)) BPs in the low–glycemic load vs the low-fat group; mean arterial BP declined more in the low–glycemic load group (\(P = .04 \)).

COMMENT

The primary finding of our study was that physiological adaptations that serve to defend baseline body weight can be modified by dietary composition. The REE declined by 80 kcal/d less and hunger was less on the low–glycemic load diet vs the low-fat diet during weight loss, similar to results from a prior short-term study. In addition, the low–glycemic load diet studied here produced favorable changes in insulin resistance, lipids, chronic inflammation, and BP compared with a conventionally recommended diet that was lower in saturated fat, cholesterol, and sodium. We found no evidence to support a previous hypothesis derived from analysis of nitrogen balance that high–glycemic index, energy-restricted diets would have adverse effects on body composition, although our study may not be of sufficient length to adequately examine this question.

Two methodological issues warrant discussion. First, to maximize differences in glycemic load, we did not control for macronutrient composition; therefore, the question arises as to whether any conventionally recognized effect of macronutrient composition could explain the study’s primary finding. The increase in energy expenditure during the postprandial state, termed the *thermic effect of food*, is greater for protein than for carbohydrate or fat. However, the REE was measured in our study after a fast of more than 10 hours, eliminating the possibility of confounding by the thermic effect of food. Diets with different protein content might also alter REE through effects on lean body mass. However, changes in body composition as assessed by dual-energy x-ray absorptiometry scan were not different among participants who were treated with the low–glycemic load vs the low-

Table 4. Weight Loss and Body Composition by Dietary Treatment Group

<table>
<thead>
<tr>
<th></th>
<th>Low-Fat Diet Group (n = 17)</th>
<th>Low–Glycemic Load Diet Group (n = 22)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final weight, kg</td>
<td>82.1 (0.3)</td>
<td>81.9 (0.3)</td>
<td>.75</td>
</tr>
<tr>
<td>Weight loss, kg</td>
<td>9.5 (0.3)</td>
<td>9.6 (0.3)</td>
<td>.75</td>
</tr>
<tr>
<td>Weight loss, %</td>
<td>10.5 (0.3)</td>
<td>10.5 (0.3)</td>
<td>.93</td>
</tr>
<tr>
<td>Final lean mass, kg</td>
<td>50.1 (0.3)</td>
<td>50.5 (0.3)</td>
<td>.45</td>
</tr>
<tr>
<td>Final fat mass, kg</td>
<td>28.8 (0.6)</td>
<td>28.7 (0.5)</td>
<td>.85</td>
</tr>
</tbody>
</table>

Figure 3. Resting Energy Expenditure (REE) for Each Participant at Baseline and Post-Diet for the Low-Fat and Low–Glycemic Load Diet Groups
fat diet, and adjustment for change in body composition did not alter the RRE
effect. Of particular significance, differ-
ces in dietary protein of the same or
greater magnitude as that used in our
study did not result in any differences in
REE, either following weight mainte-
nance or weight loss, in 5 previous
articles.27,31

A second methodological issue is that
measurement of RRE was made dur-
ing ongoing weight loss. The magni-
tude of observed effect could change with
weight stabilization and addi-
tional research is needed to assess this
possibility. Nevertheless, the physi-
ological adaptations that occur during
active weight loss may be especially rel-
vant to understanding why most obese
individuals become noncompliant with
conventional energy-restricted diets
long before a normal body weight has
been reached. Indeed, diet-induced dif-
fences in RRE were observed after our
participants had lost less than half of
their excess adiposity, and after just 1
week of energy restriction in a previ-
sous study.38

The difference in RRE is too small to
account for any significant change in
body composition over the short term.
For example, 80 kcal/d over 10 weeks
(5600 kcal) would amount to less than
1 kg of body weight. Thus, our study
does not support claims that popular di-
ets can cause rapid weight loss by induc-
ing major shifts in energy metabolism.

Nevertheless, the RRE difference here
could amount to several pounds of
weight change per year, given this effect
would persist over the long term. For
comparative purposes, an energy bal-
ance of –80 kcal/d could be obtained by
walking approximately 1 mile/d or by
decreasing sugar-sweetened soft drink
consumption 6 oz/d. Indeed, this differ-
ence (360 kcal/wk) would explain most
of the mean difference in rate of weight
loss between groups (0.09 kg/wk × 7500
kcal/kg = 675 kcal/wk).

A potentially more important ques-
ton is whether the magnitude of change
in RRE during weight loss would pre-
dict likelihood of achieving and main-
taining clinically significant weight loss.
Some studies32,33 but not all34 suggest
an inverse relationship between RRE
and weight gain or regain. An indi-
vidual experiencing a larger decline in
RRE during weight loss may feel more
fatigued, cold, and hungry than an in-
dividual experiencing a small decline,
and these symptoms may make com-
pliance with dietary energy restriction
increasingly difficult over time.

The physiological mechanisms relat-
ing dietary composition to RRE during
weight loss remain speculative but may
involve altered availability of metabolic
fuels. Blood glucose and free fatty acids
are reduced in the postabsorptive phase
following a high– vs low–glycemic in-
dex meal, and this reduction can be suf-
cient in magnitude to trigger release of
stress hormones.32 Low circulating con-
centrations of metabolic substrate might
directly impair energy metabolism at the
cellular level, as occurs with frank hy-
poglycemia.33 Alternatively, the de-
crease in RRE may come from neuroen-
docrinological adaptations designed to
conserve energy, involving thyroid hor-
mone, growth hormone, sex hor-
mones, or leptin (an adipocyte-derived
factor that acts in the hypothalamus).32,34;
lack of data on these hormones com-
prises a limitation of our study. Inter-
estingly, rodents treated with nutrient-
controlled high–glycemic index diets
compared with low–glycemic index
diets demonstrate an increase in meta-
abolic efficiency analogous to that ob-
served by our participants taking the
low-fat (high–glycemic index) diet.36

Epidemiological analyses have found
associations between glycemic load and
high triglycerides, low high-density li-
oprotein cholesterol, and elevated C-
reactive protein levels.37 In 1 study,38
individuals in the highest vs lowest
quintile of glycemic load had double the
risk of developing heart disease, after
controlling for potentially confounding
factors. However, these effects have
d not previously been examined in inter-
ventional studies. We found that
during weight loss, a diet focused on gly-
cemic load reduction produced greater
improvements in several important car-
diovascular disease–related and diabe-
tes mellitus–related end points than a

Table 5. Cardiovascular Disease Risk Factors Before and After 10% Weight Loss by Dietary Treatment Group

<table>
<thead>
<tr>
<th></th>
<th>Low-Fat Diet Group (n = 17)</th>
<th>Low–Glycemic Load Diet Group (n = 22)</th>
<th>% Change (Adjusted)</th>
<th>% Change (Adjusted)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Posttreatment</td>
<td>Baseline</td>
<td>Posttreatment</td>
<td></td>
</tr>
<tr>
<td>HOMA score</td>
<td>1.45 (0.20)</td>
<td>1.10 (0.13)</td>
<td>−15.8 (5.13)</td>
<td>1.50 (0.18)</td>
<td>0.97 (0.11)</td>
</tr>
<tr>
<td>Triglycerides, mg/dL†</td>
<td>92.4 (9.47)</td>
<td>102.3 (8.11)</td>
<td>16.2 (5.24)</td>
<td>78.3 (8.40)</td>
<td>72.4 (7.19)</td>
</tr>
<tr>
<td>HDL-C, mg/dL†</td>
<td>49.3 (3.61)</td>
<td>44.1 (2.41)</td>
<td>−8.1 (3.49)</td>
<td>46.9 (3.20)</td>
<td>42.2 (2.14)</td>
</tr>
<tr>
<td>LDL-C, mg/dL†</td>
<td>124.3 (9.86)</td>
<td>104.6 (9.73)</td>
<td>−15.0 (4.12)</td>
<td>138.7 (9.75)</td>
<td>115.9 (8.63)</td>
</tr>
<tr>
<td>C-reactive protein, mg/dL</td>
<td>0.19 (0.06)</td>
<td>0.13 (0.04)</td>
<td>−5.1 (13.61)</td>
<td>0.28 (0.06)</td>
<td>0.10 (0.03)</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>107.5 (2.90)</td>
<td>104.6 (2.35)</td>
<td>−3.1 (1.32)</td>
<td>110.4 (2.55)</td>
<td>102.3 (2.60)</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>67.8 (2.03)</td>
<td>66.2 (1.80)</td>
<td>−2.5 (1.61)</td>
<td>69.2 (1.78)</td>
<td>64.2 (1.58)</td>
</tr>
<tr>
<td>Mean arterial pressure, mm Hg</td>
<td>94.1 (2.48)</td>
<td>91.7 (2.03)</td>
<td>−3.0 (1.27)</td>
<td>96.6 (2.18)</td>
<td>89.5 (1.78)</td>
</tr>
</tbody>
</table>

Abbreviations: BP, blood pressure; HDL-C, high-density lipoprotein cholesterol; HOMA, homeostasis model assessment; LDL-C, low-density lipoprotein.

*Effect of dietary treatment on % change.

©2004 American Medical Association. All rights reserved.
LOW–GLYCEMIC LOAD DIET AND RESTING ENERGY EXPENDITURE

...diet focused on reduction of total and saturated fat in accordance with conventional practice. We speculate that these improvements were caused by reduction in insulin concentration; hyperinsulinemia plays a critical role in development of the insulin resistance syndrome (metabolic syndrome) consisting of hypertension, dyslipidemia, chronic inflammation, and other heart disease risk factors in the setting of central obesity. Our participants did not have the metabolic syndrome at baseline (Table 1), sample size was relatively small, the study was of relatively short duration, and all meals were prepared in a metabolic kitchen; therefore, the generalizability of these findings requires further study.

In conclusion, we found that the physiological adaptations to a weight-reducing diet thought to antagonize ongoing weight loss, involving energy expenditure and hunger, can be modified by dietary composition. In addition, the low–glycemic load diet had beneficial effects on several obesity-related risk factors compared with a low-fat diet that was consistent with current nutritional guidelines. Incorporation of glycemic load principles into current dietary guidelines may aid in the treatment of obesity and prevention of cardiovascular disease and diabetes mellitus, a possibility that warrants evaluation in long-term randomized controlled trials.

Author Contributions: Dr Ludwig had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Pereira, Swain, Ludwig.
Acquisition of data: Pereira, Swain, Goldfine, Rifai, Ludwig.
Analysis and interpretation of data: Pereira, Swain, Goldfine, Rifai, Ludwig.
Critical revision of the manuscript for important intellectual content: Pereira, Swain, Goldfine, Rifai, Ludwig.
Statistical analysis: Pereira.
Obtained funding: Pereira, Ludwig.
Administrative, technical, or material support: Pereira, Swain, Rifai.
Study supervision: Pereira, Swain, Ludwig.

Funding/Support: This study was supported by grant R01 DK59240 from the National Institute of Diabet...