Contamination Rates of Blood Cultures Obtained by Dedicated Phlebotomy vs Intravenous Catheter

Alonna Norberg, MD
Norman C. Christopher, MD
Maria L. Ramundo, MD
John R. Bower, MD
Shirley A. Berman, RN

Fever is the primary complaint in up to 20% of children presenting to emergency departments, and bacteremia is the source of fever in 1.5% to 2.3% of these patients. Blood culture is the criterion standard for identifying children with bacteremia; however, false-positive blood cultures are common and may add significantly to health care costs. High rates of contamination are common among pediatric patients, likely related to difficulties inherent to phlebotomy in young patients. To minimize the number of venipunctures in children, blood culture specimens are obtained simultaneously with intravenous catheter placement in many emergency departments. The impact of using intravenous catheters to obtain blood cultures is unclear. We hypothesized that the blood culture contamination rate would be less when blood culture specimens were obtained from a remote site rather than through a newly inserted intravenous catheter.

METHODS

A preintervention and postintervention observational study of patients who had a blood culture obtained as part of their routine emergency department course was conducted. Patients 18 years old or younger who presented to the emergency department at a free-standing tertiary care children’s hospital that evaluates more than 65,000 children annually and required a blood culture as part of their routine care were eligible. Medical records were reviewed in all cases with a positive blood culture. Patients with indwelling vascular catheters were excluded.

Context Blood culture is the criterion standard for identifying children with bacteremia. However, elevated false-positive rates are common and are associated with substantial health care costs.

Objective To compare contamination rates in blood culture specimens obtained from separate sites vs through newly inserted intravenous catheters.

Design, Setting, and Participants Observational study conducted January 1998 through December 1999 among patients aged 18 years or younger who were seen at a US children’s hospital emergency department and had a blood culture obtained as part of their care. Medical records were reviewed in all cases with a positive blood culture. Patients with indwelling vascular catheters were excluded.

Intervention All phlebotomy was performed by emergency department registered nurses. During the baseline phase, blood specimens for culture were obtained simultaneously with intravenous catheter insertion. During the postintervention phase, specimens were obtained by a separate, dedicated procedure.

Main Outcome Measure Contamination rate in the postintervention period compared with the baseline period.

Results A total of 4108 blood cultures were evaluated, including 2108 during the baseline phase and 2000 in the postintervention phase. The false-positive blood culture rate decreased from 9.1% to 2.8% (P < .001). A statistical process control chart demonstrated a steady-state process in the baseline phase and the establishment of a significantly improved steady state in the postintervention phase. Young age was associated with increased contamination rate in both the baseline and postintervention periods.

Conclusion Blood culture contamination rates were lower when specimens were drawn from a separate site compared with when they were drawn through a newly inserted intravenous catheter.

JAMA. 2003;289:726-729 www.jama.com

©2003 American Medical Association. All rights reserved.
for specimen collection and inoculation were standardized and remained unchanged during the study. Nursing staff members were unaware of ongoing data collection and analysis. In cases where a positive blood culture was reported, the patient’s medical record was reviewed. Patients with indwelling devices (central venous lines, ventricular catheters) were excluded.

Baseline Phase

During the baseline phase (January 1, 1998-November 19, 1998), culture specimens were obtained through a newly inserted peripheral intravenous catheter using the standard over-the-needle approach. A sterile 5-mL syringe was attached to the catheter hub, and blood for both culture and for laboratory studies was withdrawn; the first portion of the sample was used for culture. During the first 4 months of the baseline phase, focused efforts to decrease the contamination rate were implemented. Because these interventions failed to reduce the contamination rate, the standard technique was abandoned in favor of obtaining specimens from a separate phlebotomy site. Data from a 6-week implementation phase (November 20, 1998-December 31, 1998) were not included in the analysis.

Postintervention Phase

During the postintervention phase (January 1, 1999-December 31, 1999), culture specimens were obtained by venipuncture at a dedicated site. If a patient required an intravenous catheter, it was placed using the standard approach at a site distant from the blood culture venipuncture site. While laboratory specimens were sometimes obtained through the newly inserted intravenous catheter, all specimens for culture were obtained by phlebotomy dedicated to that procedure.

Classification of Blood Culture Isolates

Blood culture isolates were categorized as contaminants or pathogens. In all cases, Neisseria meningitidis, Streptococcus pneumoniae, Salmonella species, Haemophilus influenzae, and group A or group B β-hemolytic streptococci were considered pathogens. A contaminant was defined as a nonpathogenic microorganism. If pathogenicity was uncertain or variable, assignment was made in consultation with an infectious disease expert (J.R.B.), with consideration of patient demographics and the clinical setting. Assignment was made without knowledge of the intervention phase. Because the presence of even a single nonpathogenic species in the blood culture specimen represented improper phlebotomy technique, a specimen with multiple bacteria was considered contaminated.

Decisions regarding treatment and follow-up of patients were made by clinicians in the emergency department based on current practice. The institutional review board of the Children’s Hospital Medical Center of Akron approved the study protocol. Consent was not obtained from families. The intervention was adopted as our standard of care, and data was collected in a blinded database for analysis.

Data Analysis

Data were analyzed using STATA Version 7.0 (Dallas, Tex, 2001). Univariate analysis was performed unless stated otherwise. Pearson χ² was used to analyze categorical data. Descriptive analysis of continuous data was performed. P <.05 was the level of significance.

Statistical process control methodology was also used to examine the impact of the intervention over time. A run chart was constructed showing the blood culture contamination rate for each month of the study. The overall false-positive rate was 9.1% and the true-positive rate was 1.5%. In the postintervention period, there were 101 positive blood cultures; of these, 45 grew a pathogen. In the 56 contaminated specimens, 65 organisms were cultured (Table 2). The overall false-positive rate during the

Table 1: Patient Demographics

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n = 2108)</th>
<th>Postintervention (n = 2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR), y</td>
<td>1.4 (0.47-3.8)</td>
<td>1.4 (0.42-3.4)</td>
</tr>
<tr>
<td>Emergency department disposition, No. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admit</td>
<td>1099 (52.0)</td>
<td>1042 (52.0)</td>
</tr>
<tr>
<td>Discharge</td>
<td>1009 (48.0)</td>
<td>958 (48.0)</td>
</tr>
<tr>
<td>Age category, No. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><12 wk</td>
<td>385 (18.3)</td>
<td>353 (17.7)</td>
</tr>
<tr>
<td>3 mo-<2 y</td>
<td>887 (42.1)</td>
<td>891 (44.6)</td>
</tr>
<tr>
<td>>2 - <=5 y</td>
<td>391 (18.5)</td>
<td>381 (19.1)</td>
</tr>
<tr>
<td>>5 y</td>
<td>445 (21.1)</td>
<td>375 (18.8)</td>
</tr>
</tbody>
</table>

Abbreviation: IQR, interquartile range.

RESULTS

During the study, 4448 blood culture specimens were obtained. We excluded 289 specimens obtained during the 6-week implementation phase, 14 with incomplete data in the medical record and 37 because of the presence of central venous catheters, leaving 4108 emergency department visits for analysis (2108 in the baseline phase and 2000 in the postintervention phase). Overall, there were 324 positive blood culture specimens.

Patient demographics are presented in Table 1. There were no statistically or clinically important differences between patients in the baseline and in the postintervention phases.

During the baseline phase, 223 positive blood culture specimens were reported; of these, 32 specimens grew a pathogen. In the 191 blood culture specimens categorized as contaminated, 243 organisms were cultured (Table 2). The overall false-positive rate was 9.1% and the true-positive rate was 1.5%. In the postintervention period, there were 101 positive blood cultures; of these, 45 grew a pathogen. In the 56 contaminated specimens, 65 organisms were cultured (Table 2). The overall false-positive rate during the
COMMENT

The contamination rates were significantly lower when blood culture specimens were drawn from a separate and dedicated venipuncture site compared with through a newly inserted intravenous catheter in children seen in a busy emergency department. The low rates have been sustained since the end of the study.

The statistical quality control methodology we applied provides a simple graphical display of process data that enhances our ability to understand outcomes that occur over time.17 This methodology has been used increasingly in the evaluation of processes occurring in the health care setting.16,20,21 The premise is that when a process achieves steady state, it is likely to remain there until events cause it to shift to a new steady state.18,19

This study addresses a common problem that has been linked to substantial and unnecessary resource utilization.9,10,22-24 The contamination rate in our emergency department was resistant to change in spite of several specific interventions intended to address the problem. The sole procedural change was in the method by which blood culture specimens were obtained. During the baseline phase, the overall false-positive blood culture rate was 9.1% compared with a rate of 2.8% after the intervention, representing a decrease of 70%. While not statistically significant, the true-positive rate increased from 1.5% at baseline to 2.3% after the intervention. We believe that at least some of this increase is due to more selective ordering of blood cultures during the postintervention phase, when all cultures were obtained in response to other diagnostic tests obtained during the patient’s emergency department evaluation. Since it is easier to obtain blood for culture from an intravenous catheter, cultures may have been obtained more indiscriminately in the baseline phase.

Previous studies comparing contamination rates in specimens obtained through newly inserted intravenous catheters or by phlebotomy at a remote

Table 2. Blood Culture Contaminants in the Baseline and Postintervention Periods of Study

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>No. of Organisms (% of Total Contaminated Specimens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>Baseline: 140 (73) vs Postintervention: 37 (67)</td>
</tr>
<tr>
<td>Streptococcus viridans</td>
<td>Baseline: 57 (30) vs Postintervention: 8 (14)</td>
</tr>
<tr>
<td>Corynebacterium species</td>
<td>Baseline: 13 (7) vs Postintervention: 7 (12)</td>
</tr>
<tr>
<td>Micrococcus species</td>
<td>Baseline: 13 (7) vs Postintervention: 5 (8)</td>
</tr>
<tr>
<td>Bacillus species</td>
<td>Baseline: 3 (1.6) vs Postintervention: 3 (5)</td>
</tr>
<tr>
<td>Propionibacterium acnes</td>
<td>Baseline: 4 (2) vs Postintervention: 0</td>
</tr>
<tr>
<td>Neisseria species</td>
<td>Baseline: 3 (1.6) vs Postintervention: 0</td>
</tr>
<tr>
<td>Others</td>
<td>Baseline: 10 (5) vs Postintervention: 5 (8)</td>
</tr>
<tr>
<td>Total No. of Organisms</td>
<td>Baseline: 243 vs Postintervention: 65</td>
</tr>
</tbody>
</table>

*There were 191 contaminated specimens growing 243 organisms in the baseline phase and 56 contaminated specimens growing 65 organisms in the postintervention phase of the study.

Figure 1. Statistical Process Control Chart Showing the Percentage of All Blood Cultures Growing Contaminants by Month, for the 2-Year Study Period

The upper and lower control limits (dotted lines) represent ±3 SD from the mean (dashed line). The mean, upper control limit, and lower control limit are calculated based on data in the baseline phase of the study.

Figure 2. Blood Culture Contamination Rate, by Age Category, During the Baseline and Postintervention Phases of Study

postintervention period was 2.8%, with a true-positive rate of 2.3%. Using a 2-sample test of proportions, the contaminated blood culture rate in the postintervention phase is significantly decreased when compared with the baseline phase (P < .001). The increase in true-positive rates did not reach statistical significance (P = .20).

The statistical process control chart (FIGURE 1) shows 12 consecutive data points below the mean established in the baseline phase in the postintervention phase, indicating a special cause effect (the intervention) and a significant change in the measured outcome (the contamination rate).19

The contamination rates in the baseline and postintervention phases are higher the younger the child (FIGURE 2). For example, in the baseline phase, the contamination rate in patients younger than 12 weeks was 17%, compared with 4.5% in those older than 5 years.
site suggest that the 2 techniques are essentially equivalent. Smart and Baggo-
ley failed to show a difference in the contamination rate in 940 adult pa-
tients randomized to phlebotomy by ei-
ther venipuncture or by placement of an
intravenous catheter. Isaacman and Karasic prospectively evaluated a con-
venience sample of 99 pediatric pa-
tients, each of whom had 2 blood cul-
tures obtained, one by venipuncture and one through a newly inserted intrave-
nous catheter. The authors demonstrat-
ed a low contamination rate with both techniques, concluding that newly
inserted intravenous catheters offer an alternative to a separate venipuncture
procedures in patients requiring blood
culture. The small number of patients
enrolled and the impact of the nursing
staff's awareness of the study protocol
may have biased the results.

On the other hand, a study by Ram-
sook et al suggested that blood cul-
ture contamination rates were decreased when using dedicated phlebotomy com-
pared with those obtained through a
newly inserted intravenous catheter. Importantly, this study demonstrated the highest contamination rates in patients younger than 3 months of age, regardless of the collection method used, finding confirmed in our study. Because staff members were aware of ongoing data collection, the potential effect on their phlebotomy technique is unknown.

However, our study also has limita-
tions; because medical records were reviewed only for those patients with positive blood cultures, detailed information about patients with negative blood cultures is not known. In par-
ticular, information about antibiotic pre-
treatment is unknown. While it is likely that some patients were prescribed systemic antibiotic therapy prior to or during their emergency department evaluation, the rates of antibiotic pre-
treatment in the baseline and postint-
ervention phases of the study are likely to be similar and unlikely to affect the study's conclusions. In addition, this protocol was implemented in a single unit and may not be generalizable to other settings. Finally, no concurrent control group was included to account for secular temporal changes.

Obtaining blood cultures from a sepa-
rate site requires the patient to un-
dergo an additional procedure for phle-
botomy, but the overall benefit in terms of costs associated with a high contami-
nation rate is likely to be substantial.

During the baseline period, there were 6 contaminated specimens for every true-positive blood culture, compared with a ratio of 1.2:1 after implementa-
tion of the intervention. If subsequent patient management is based on pre-
liminary blood culture results, false-
positive test results will result in repeat emergency department visits, unness-
ecessary medical interventions, unnec-
essary antibiotic therapy, and even hos-

dital admission. One study found that 26% of children followed as outpa-
tients who had false-positive blood cul-
tures were hospitalized unnecessarily, and that unnecessary use of antibiotics was significantly increased in the pres-
ence of false-positive blood culture res-

ults. Additional costs that are more dif-

cult to quantify include staff effort and
time required to arrange follow-up for
patients, exposure of patients to unnec-

essary procedures, and cost and incon-

venience related to repeat emergency
department and/or hospital visits.

Author Contributions: Study concept and design:
Norberg, Christopher, Ramundo, Berman.
Acquisition of data: Norberg, Christopher, Ramundo, Berman.
Analysis and interpretation of data: Norberg, Christopher, Bower.
Drafting of the manuscript: Norberg, Christopher, Bower.
Critical revision of the manuscript for important in-
tellectual content: Norberg, Christopher, Ramundo, Bower, Berman.
Statistical expertise: Christopher.
Administrative, technical, or material support: Norberg, Christopher, Bower, Berman.
Study supervision: Christopher, Ramundo, Bower.

REFERENCES
1. Nelson DS, Walsh K, Fleisher GR. Spectrum and fre-
quency of pediatric illness presenting to a general com-
2. Alpern ER, Alessandri EA, Bell LM, et al. Occult bac-
3. Lee GM, Harper MB. Risk of bacteremia for fe-
brile young children in the post-Haemophilus influ-
5. Kupperman N. Occult bacteremia in young fe-
1109.
6. Downs SM, McNutt RA, Magolis PA. Manage-
ment of infants at risk for occult bacteremia: a deci-
7. Yamamoto LG, Worthley RG, Melish ME, et al. A re-
vised decision analysis of strategies in the manage-
8. Weinbaum FL, Lueve S, Danek M, et al. Doing it right the first time: quality improvement and the contami-
nation of blood culture. J Clin Microbiol. 1997;35:563-
565.
9. Thuler LCS, Jeniecek M. Impact of a false positive blood culture result on the management of febrile chil-
10. Bates DW, Goldman L. Contaminant blood cul-
ture and resource utilization: the true consequences of
11. Lieu TA, Schwartz JS. Strategies for diagnosis and
treatment of children at risk for occult bacteremia: clini-
118:21-29.
12. Campos JM. Detection of blood stream infec-
13. Tonnesen A, Peuler M, Lockwood WR. Cultures of
blood drawn by catheter vs venipuncture. JAMA. 1976;
235:1877-1879.
14. Isaacman DJ, Kasic RB. Utility of collecting blood
cultures through newly inserted intravenous cath-
15. Ramsook C, Childers K, Cron SG, Nikerin M. Com-
pairision of blood culture contamination rates in a pe-
diatric emergency room: newly inserted intravenous catheters versus venipuncture. Infect Control Hosp Epi-
16. Schwab RA, DeSorbo SM, Cunningham MR, Cra-
en K, Watson WA. Using statistical process control
to demonstrate the effect of operational interven-
tions on quality indicators in the emergency depart-
17. Benneyan JC. Statistical quality control methods in
infection control and hospital epidemiology, part I: in-
roduction and basic theory. Infect Control Hosp Epi-
18. Benneyan JC. Statistical quality control methods in
infection control and hospital epidemiology, part II: chart use, statistical properties, and research is-

sues. Infect Control Hosp Epidemiol. 1998;19:265-
283.
19. Humble C. Caveats regarding the use of control
charts. Infect Control Hosp Epidemiol. 1998;19:865-
868.
20. Mylotte JM, White D, McDermott C, Hodan C. Nosocomial bloodstream infection at a veterans hos-
10:455-464.
21. Koska MT. Using CQI methods to lower postsur-
gical wound infection rates. Hospitals. 1992;66:62-
64.
22. Smart D, Baggo兼顾. Effect of needle changing
and intravenous cannula collection on blood culture
1168.
23. Kornberg A. Evaluation of false positive blood cul-
tures: guidelines for early detection of contaminated
10:20-23.
24. Segal GS, Chamberlain JM. Resource utilization and
154:469-473.

©2003 American Medical Association. All rights reserved.