Secondary Aerosolization of Viable Bacillus anthracis Spores in a Contaminated US Senate Office

Christopher P. Weis, PhD
Anthony J. Intrepido, MS, CIH
Aubrey K. Miller, MD, MPH
Patricia G. Cowin, MS, CIH
Mark A. Durno, BS
Joan S. Gebhardt, PhD
Robert Bull, PhD

On October 15, 2001, a letter containing threatening language and a light tan powdery substance was opened in the mail handling area of a Senate office suite in the Hart Senate Office Building, Washington, DC. Federal officials removed the letter and shut down the local air handling systems. The letter was transported to the US Army Medical Research Institute of Infectious Disease and was subsequently confirmed to contain viable Bacillus anthracis (anthrax) spores that were dispersible in air. Scanning electron microscopy of the spores used in the Senate office attack showed that they ranged from individual particles to aggregates of 100 µm or more. Spores were uniform in size and appearance and the aggregates had a propensity to pulverize (ie, disperse into smaller particles when disturbed).

Following the attack, nasal swabs were collected by other investigators from more than 7000 building occupants and cultured for Bacillus anthracis. Twenty of 38 individuals in the office suite where the envelope was opened and personal air monitors (P= .01) during active office conditions. More than 80% of the Bacillus anthracis particles collected on stationary monitors were within an alveolar respirable size range of 0.95 to 3.5 µm. Conclusions Bacillus anthracis spores used in a recent terrorist incident reaerosolized under common office activities. These findings have important implications for appropriate respiratory protection, remediation, and reoccupancy of contaminated office environments.

©2002 American Medical Association. All rights reserved.
B. anthracis spores in building environments is essential for exposure assessment and risk evaluation following bioterrorism attacks. Such understanding will also guide cleanup strategies for readily dispersible bioaerosols.

METHODS

Environmental samples were collected in the affected Senate office suite (total area approximately 1200 sq ft) beginning 25 days after the initial incident. Stationary and personal air samples and surface samples were collected during 3 separate building entries (Table 1). Initial semiquiescent sampling was followed by second and third rounds of sampling under simulated active office conditions. All analyses were conducted such that only viable spores or spore aggregates were recorded.

During semiquiescent sampling, movement was minimized in the suite while air and surface samples were collected from various locations. During the semiquiescent sampling, the sample team (wearing sterile gloves, boots, hooded protective suits, and powered air purifying respirators with P.100 cartridges) placed sampling devices in the locations indicated in the FIGURE and left the suite to reduce air turbulence for the duration of the sample collection period. Following semiquiescent sampling, active office conditions were simulated to reflect routine behaviors in a busy office environment (ie, paper handling, active foot traffic, simulated mail sorting, moving trash containers, patting chairs). There was no activity in the office suite several days prior to or between sampling periods.

There are no validated environmental sampling or risk assessment methods for B. anthracis contamination. Questions regarding collection techniques, laboratory extraction efficiency from environmental media, and appropriate methods for air monitoring remain unanswered. Accordingly, in this investigation a variety of environmental sampling methods were used to assess their usefulness for estimating environmental exposure and risk from B. anthracis spores. Samples and sample locations were based on plausible exposure pathways (both inhalation and dermal) and were selected based on proximity to the original release, pedestrian traffic patterns within the suite, representative exposures to the staff in the work area, and areas of interest for spore transport within the office suite (eg, computer monitors).

Environmental sampling methods included air monitoring with stationary and personal sampling devices (devices worn by the sample team to characterize colony-forming unit [CFU] levels in their breathing zone) that actively collected spores from a known volume of air as well as open blood agar plates that passively collected spores deposited from the Hart Senate Office Building aerosol.

Table 1. Chronology of Secondary Aerosolization Sampling in the Hart Senate Office Building After the Primary Aerosolization Event on October 15, 2001

<table>
<thead>
<tr>
<th>Method</th>
<th>November 10, 2001 AM (Semiquiescent Sampling)</th>
<th>November 10, 2001 PM (1st Active Sampling Period)</th>
<th>November 15, 2001 (2nd Active Sampling Period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal breathing zone samples</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Passive SBA plates</td>
<td>17</td>
<td>17</td>
<td>NA</td>
</tr>
<tr>
<td>Microvacuum</td>
<td>NA</td>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>Andersen samples</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Microvacuum (floor position)</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>Andersen samples (floor position)</td>
<td>NA</td>
<td>NA</td>
<td>2</td>
</tr>
<tr>
<td>Surface swab samples</td>
<td>9</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

*Note: Drawing not to scale

NA indicates not available. Numerical values of viable Bacillus anthracis colonies represent passive samples collected by placing open sheep blood agar plates during semiquiescent and first active sampling periods (semiquiescent, first active). Surface swab samples in the second active sampling period had no corresponding control samples.
Surface samples were collected to help characterize the presence of *B anthracis* contamination on a variety of surface types using both microvacuum devices and sterile swabs. These environmental samples were collected under both quiescent and active office conditions to assess the influence of human movement within the suite on environmental spore concentrations.

Andersen 6-stage viable (microbial) particle-sizing samplers (Thermo-Andersen, Smyrna, Ga) were used to collect airborne spores to evaluate concentrations and size ranges of spores or spore aggregates. Andersen samplers were operated for 10 minutes at an air flow rate of 28.3 L/min during each sample collection period. The Andersen sampler collects spores according to nominal aerodynamic diameters on each of 6 vertically stacked agar plates. Andersen samplers use petri dishes filled with 42 mL of agar to control aerodynamics of particle impact on plates according to manufacturer-specified cutoffs of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 µm. For this investigation, 18 mL of 5% sheep blood agar (SBA) plates (Remel Inc, Lenexa, Kan) were used for collection media. Use of reduced media volume resulted in an increase in the specified jet-to-plate distance of 0.3 cm with a corresponding increase in the specified jet-to-plate distance of 0.3 µm in the particle size cutpoints. Thus, the smallest particle impacting the number 6 plate in the cascade would have a nominal diameter of 0.95 µm (ie, 0.65 µm + 0.3 µm).

For the quiescent and the first active testing period, 2 viable Andersen impact samplers (6-stage) were used; 1 was placed on the floor in the vicinity of the original contamination and 1 was placed on the floor 20 feet away near the common entrance to the suite (Figure). During the second active sampling period, the 2 Andersen samplers were placed at the breathing zone level in the same locations, and a specially configured 2-stage Andersen sampler was placed at a floor location near the original source zone. The final stage of this sampler was fitted with a glass fiber filter to trap any remaining viable spores smaller than the final impact stage (approximately 0.9 µm). At the end of each sample collection period, Andersen samplers were disinfected to avoid cross-contamination.

Direct colony counts on SBA plates in the Andersen samplers were obtained and the positive hole correction method was used to acquire a statistical probability count of CFUs (Table 2).

Box. Positive Hole Correction Method

The positive hole correction method determines a statistical probability count of colony-forming units. It represents a count of the jets that delivered the spores to the agar plates and the conversion of the jet number to a particle count by using the “positive hole” conversion formula:

\[
Pr = N \times \sum_{x=0}^{r} \left(\frac{1}{N-x} \right)
\]

where Pr is the expected number of viable particulates to produce *r* positive holes and *N* is the total number of holes per stage (400). This formula is based on the principle that as the number of viable particles being impinging on a given plate increases, the probability of the next particle going into an unpenetrated hole decreases. Thus, when 9 of 10 of the holes have each received 1 or more particles, the next particle has but 1 chance in 10 of going into an unpenetrated hole. Therefore, on average, 10 additional particles would be required to increase the number of positive holes by 1.

Table 2. Stationary Air Samples of Viable *Bacillus anthracis* Particles*

<table>
<thead>
<tr>
<th>Nominal Particle Size, µm</th>
<th>No. of CFUs (No. Based on Positive Hole Correction Method)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mail Handling Area</td>
</tr>
<tr>
<td></td>
<td>Semi-quiescent Condition</td>
</tr>
<tr>
<td></td>
<td>Floor</td>
</tr>
<tr>
<td>>7.1</td>
<td>1</td>
</tr>
<tr>
<td>4.8-7.1</td>
<td>0</td>
</tr>
<tr>
<td>3.2-4.7</td>
<td>2</td>
</tr>
<tr>
<td>2.1-3.1</td>
<td>3</td>
</tr>
<tr>
<td>1.1-2.0</td>
<td>30 (31)</td>
</tr>
<tr>
<td>0.65-1.0</td>
<td>11</td>
</tr>
<tr>
<td>Total CFUs</td>
<td>47 (48)</td>
</tr>
<tr>
<td>Estimated air concentrations (CFUs/m³)</td>
<td>170 (171)</td>
</tr>
</tbody>
</table>

CFUs indicate colony-forming units. Samples were collected on 6-stage Andersen sampling devices designed to register nominal spore size for viable particles.
Secondary Aerosolization of Bacillus Anthracis Spores

swabs were used to sample both vertical and horizontal surfaces as defined by 100-µm pore size (having submicron retention efficiencies) were connected to the pump with tubing to form a microvacuum device. Sampled areas were defined by a 100-cm² template, then vacuumed using a slow back and forth motion first in one direction, and then perpendicular to the original direction. Microvacuum samples were collected at workstations in 5 different office areas during the second active sampling period.

Swab samples were used to assess the presence of B. anthracis contamination on an additional 12 surfaces. Sterile nylon swabs moistened with sterile water were used to sample both vertical and horizontal surfaces as defined by 100-cm² templates. Areas were swabbed in perpendicular directions using a slowly progressing S-shaped motion and then placed in sterile 15-mL tubes. Nine swab samples were collected for both the semiquiescent and first active sampling periods: 3 vertical semigloss latex painted surfaces (2 doors and 1 wall), 3 computer monitors, and 3 individual mailboxes.

Aseptic handling techniques were used throughout the sampling and analytical process. All samples were labeled immediately following collection using predetermined sample codes. Samples were placed in individual resealable bags and immediately shipped to the analytical laboratory with blind identification codes and under chain-of-custody. Field blank samples (quality-control samples used to ensure adherence to sterile microbiologic technique) were included at a frequency of 10%.

Samples were evaluated for the presence of viable B. anthracis at the Naval Medical Research Center in Silver Spring, Md. Gelatin filters were removed from the filter cassettes and placed directly on SBA plates. Swabs and glass fiber filters were macerated in 3.0 and 7.5 mL, respectively, of sterile phosphate-buffered saline for approximately 1 minute to free viable spores. Following maceration, a 1.0-mL aliquot of each sample was removed and heat shocked at 65°C for 15 minutes to reduce viable vegetative bacteria in the sample. A 200-µL aliquot of each heated sample was spread on an SBA plate and plates were incubated at 37°C for 14 hours. Following incubation, bacterial colonies morphologically consistent with B. anthracis were counted and recorded. Rapid real-time polymerase chain reaction assays were used to confirm the identity of suspect B. anthracis colonies. At least 1 suspect colony from each plate was tested for the presence of the genetic markers pag and cya, specific to the virulence plasmids pXO1 and pXO2, respectively. Following polymerase chain reaction confirmation of selected suspect colonies, the number of B. anthracis colonies on each plate was reported. Analyse-It Software version 1.64 (Analyse-It Software Ltd, Leeds, England) was used for statistical analyses and P < .05 was considered significant. All sample team members were specially trained in response to extremely hazardous environments and all participation was voluntary. The US Federal Incident Command System reviewed and approved the study. Incident Command System is a system used to organize and manage participating groups during emergency response situations.

RESULTS

Results for the 6-stage Andersen air samples are presented in Table 2. Positive hole correction results are presented below where applicable. Comparison of floor samples between semiquiescent and active conditions showed an increase in viable spore collection across all sampler stages at both the mail area (48 vs >3060 total CFUs) and entrance area (71 vs 204 total CFUs) locations. In the mail area, stationary Andersen breathing zone samples showed an increase compared with semiquiescent sampling taken previously at floor level (200 vs 48 total CFUs). Estimated airborne spore concentrations collected near the floor over a 10-minute period ranged from 171 to 251 CFUs/m³ during the semiquiescent period. For the active period, airborne CFU concentrations ranged from 721 to more than 11000 and 106 to 707 CFUs/m³ for floor and breathing zone samples, respectively. This represents as much as a 65-fold increase in CFUs under active conditions compared with semiquiescent conditions. Approximately half of the CFUs had corrected nominal diameters ranging from 1.4 to 2.4 µm, with more than 80% ranging from 0.95 to 3.5 µm. Results from the 2-stage Andersen sampler indicated no viable spores less than a corrected nominal diameter of 0.93 µm.

Locations and results of viable colony counts on the 17 open SBA plates (10 on chairs; 7 on the floor) collected during semiquiescent and active periods are shown in the Figure. During the semiquiescent period, 5 of the 17 plates were positive for B. anthracis (median, 0 CFU; range, 1-3 CFUs; 95% confidence interval [CI], 0-1). In comparison, 14 of 15 plates (1 plate was left in the suite and was desiccated beyond use) during the first active sampling period were positive for B. anthracis (median, 15 CFUs; range, 4-80 CFUs; 95% CI, 11-28) illustrating a significant increase in colony
SECONDARY Aerosolization of Bacillus anthracis Spores

Table 3. Personal Air Monitoring Results*

<table>
<thead>
<tr>
<th>Team Member</th>
<th>No. of CFUs</th>
<th>Estimated Air Concentration, CFUs/m³</th>
<th>No. of CFUs</th>
<th>Estimated Air Concentration, CFUs/m³</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>14.1</td>
<td>36</td>
<td>85.6</td>
<td>.17</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.0</td>
<td>7</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6.0</td>
<td>1</td>
<td>3.3</td>
<td>.01</td>
</tr>
</tbody>
</table>

*CFUs indicate colony-forming units. Results for the personal air monitors represent exposures integrated over the total time spent in the Hart Senate Office Building. During quiescent sampling the team spent more than half of the time in less contaminated hallway areas; therefore, results may underestimate exposure in more contaminated areas of the suite. P value comparisons with semiquiescent sample measurements.

Counts (P < .001; using a 2-tailed nonparametric Wilcoxon signed rank test).

Results of personal air monitor samples collected from team members during each of the sampling periods are presented in Table 3. Filters from all 10 of the samples were positive for *B. anthracis*. Results were positive for *B. anthracis* during semiquiescent office conditions (mean, 4 CFUs; range, 1-7 CFUs) and increased during active office conditions (mean, 14 CFUs; range, 1-36 CFUs). There was a significant increase in the number of CFUs collected on personal air samples during the second active test period (P = .01; 1-tailed paired t test with 2 df) but not the first active test period (P = .17) when compared with the semiquiescent sampling period. A 1-tailed statistical test was used with the expectation that the number of airborne viable CFUs would increase (rather than decrease) when activity increased in the suite.

Six of the 9 surface swab samples taken during the semiquiescent and first active period were positive; 3 vertical mailbox surfaces (range, 3-43 CFUs) and 3 computer screens (range, 2-150 CFUs), with little change in viable spore counts in response to increased activity. Three swab samples collected from vertical wall surfaces during each sampling period were negative. During the second active sampling period, sequential swab samples of a computer monitor screen sampled in the off, then on position, resulted in a 25-fold increase in viable colony counts on the charged screen. Deposition of spores on the charged monitor may indicate influence of electrostatic effects on spore behavior.

Additionally, 5 microvacuum samples were taken in different office areas during the second period of activity to evaluate contamination of different types of surfaces (Table 4). Although microvacuum samples showed substantial viable spore contamination of carpeted and smooth horizontal surfaces, very little contamination of vertical fabric workstation dividers or the tops of paper files was found. No CFUs were found on the field blanks collected from any of the sample types during the course of the investigation.

COMMENT

The importance of secondary aerosolization of *B. anthracis* spores associated with a bioterrorism attack has been discussed by a number of researchers. However, few empirical data existed to allow for scientifically based public health conclusions or recommendations. Although research conducted by the military has shown that *Bacillus subtilis* spores, used as a surrogate for *B. anthracis*, can aerosolize with varying activities in outdoor environments, until now, no published data have been available concerning secondary aerosolization of *B. anthracis* spores indoors. Prior to the attacks in the fall of 2001, consensus recommendations from the Working Group on Civilian Biodefense suggested only a slight risk of acquiring inhalational anthrax by secondary aerosolization from heavily contaminated surfaces. These recommendations were based on an incident involving accidental release of *B. anthracis* in Sverdlovsk, Russia, occupational studies of workers in goat hair processing mills, and modeling analyses by the US Army. The Working Group on Civilian Biodefense recognized that its recommendations were based on interpretation and extrapolation from an incomplete knowledge base and needed to be regularly reassessed as new information becomes available. A recent reassessment by the consensus group includes a precautionary note regarding reaerosolization of *B. anthracis* spores based, in part, on work presented here.

This investigation presents empirical findings concerning secondary aerosolization of viable *B. anthracis* spores following a bioterrorism incident indoors. Among the limitations of the work are the severe schedule constraints, limited availability of equipment, and the extreme conditions un-
SECONDARY AEROSOLIZATION OF BACILLUS ANTHRACIS SPORES

The magnitude of inhalational risks from reaerosolized \textit{B. anthracis} spores is uncertain. Reliable human data on the minimum infective dose for inhalational \textit{B. anthracis} is lacking. Individual susceptibility, virulence of the strain, and spore physical characteristics may all have profound impacts on the dose necessary to cause inhalational anthrax. Primate model extrapolations suggest an estimated human median lethal dose between 2500 and 55000 spores, with the highest infectivity associated with clouds of single spores, vs multisporic aggregates. Recent primate studies have demonstrated inhalational infectivity of \textit{B. anthracis} following exposure to only a few spores. Human cases of inhalational anthrax have also been reported involving minimal exposures. Risk predictions indicate that infective doses may be as low as 1 to 3 spores, and these predictions may be reflected in the 2 cases of inhalational anthrax in New York and Connecticut still under investigation.

This work clearly demonstrates a potential for secondary aerosolization of viable \textit{B. anthracis} spores originating from contaminated surfaces in an indoor environment. As a result, precautions to protect exposed decontamination workers and area occupants are indicated.

Author Contributions: Study concept and design: Weiss, Miller, Durno. Acquisition of data: Weiss, Intrepido, Miller, Cowin, Durno, Gebhardt, Bull. Analysis and interpretation of data: Weiss, Intrepido, Miller, Cowin, Durno, Gebhardt, Bull. Drafting of the manuscript: Weiss, Intrepido, Miller, Cowin. Critical revision of the manuscript for important intellectual content: Weiss, Miller, Durno, Gebhardt, Bull. Statistical expertise: Weiss, Miller. Obtained funding: Weiss. Administrative, technical, or material support: Weiss, Intrepido, Miller, Cowin, Durno, Gebhardt, Bull. Study supervision: Weiss, Durno, Gebhardt, Bull. Funding/Support: Funding and/or resources for this investigation were provided by the participating federal agencies.

Disclaimer: The views, opinions, assertions, and findings contained herein are those of the authors and should not be construed as official US agency policies or decisions unless so designated by other documentation. Any reference to products or methods does not constitute an endorsement of those products or methods by the authors or by the US federal government. Acknowledgment: In support of this work, we gratefully acknowledge the US Capitol Police for their hospitality, sample transport, and site security during the incident; the Capitol Hill Incident Commander for spirited leadership and endless encouragement; US Architect of the Capitol Division for providing tirelessly engineering and architectural advice; US Environmental Protection Agency management and especially the EPA On-Scene Coordinators; Bill Daniels, MS, CH, CSP, of the US Public Health Service for invaluable advice on sampling, study design, and detailed editorial recommendations; Chris Ansell, MS, of Center for Health Promotion and Preventive Medicine for assisting with project logistics; and the laboratory team at Naval Medical Research Center for many hours of analysis.

REFERENCES