Prevalence of Neuropsychiatric Symptoms in Dementia and Mild Cognitive Impairment
Results From the Cardiovascular Health Study

Context Mild cognitive impairment (MCI) may be a precursor to dementia, at least in some cases. Dementia and MCI are associated with neuropsychiatric symptoms in clinical samples. Only 2 population-based studies exist of the prevalence of these symptoms in dementia, and none exist for MCI.

Objective To estimate the prevalence of neuropsychiatric symptoms in dementia and MCI in a population-based study.

Design Cross-sectional study derived from the Cardiovascular Health Study, a longitudinal cohort study.

Setting and Participants A total of 3608 participants were cognitively evaluated using data collected longitudinally over 10 years and additional data collected in 1999-2000 in 4 US counties. Dementia and MCI were classified using clinical criteria and adjudicated by committee review by expert neurologists and psychiatrists. A total of 824 individuals completed the Neuropsychiatric Inventory (NPI); 362 were classified as having dementia, 320 as having MCI; and 142 did not meet criteria for MCI or dementia.

Main Outcome Measure Prevalence of neuropsychiatric symptoms, based on ratings on the NPI in the previous month and from the onset of cognitive symptoms.

Results Of the 682 individuals with dementia or MCI, 43% of MCI participants (n=138) exhibited neuropsychiatric symptoms in the previous month (29% rated as clinically significant) with depression (20%), apathy (15%), and irritability (15%) being most common. Among the dementia participants, 75% (n=270) had exhibited a neuropsychiatric symptom in the past month (62% were clinically significant); 55% (n=199) reported 2 or more and 44% (n=159) 3 or more disturbances in the past month. In participants with dementia, the most frequent disturbances were apathy (36%), depression (32%), and agitation/aggression (30%). Eighty percent of dementia participants (n=233) and 50% of MCI participants (n=139) exhibited at least 1 NPI symptom from the onset of cognitive symptoms. There were no differences in prevalence of neuropsychiatric symptoms between participants with Alzheimer-type dementia and those with other dementias, with the exception of aberrant motor behavior, which was more frequent in Alzheimer-type dementia (5.4% vs 1%; P = .02).

Conclusions Neuropsychiatric symptoms occur in the majority of persons with dementia over the course of the disease. These are the first population-based estimates for neuropsychiatric symptoms in MCI, indicating a high prevalence associated with this condition as well. These symptoms have serious adverse consequences and should be inquired about and treated as necessary. Study of neuropsychiatric symptoms in the context of dementia may improve our understanding of brain-behavior relationships.
NEUROPSYCHIATRIC SYMPTOMS IN DEMENTIA AND COGNITIVE IMPAIRMENT

tia,5,6 These include agitation, depression, apathy, delusions, hallucinations, and sleep impairment. In some cases, they cluster into syndromes, leading to the proposal of operational criteria for specific dementia-associated psychotic7,8 or mood disturbances.8,9 These symptoms have serious adverse consequences for patients and caregivers, such as greater impairment in activities of daily living,10 more rapid cognitive decline,11 worse quality of life,12 earlier institutionalization,13 and greater caregiver depression.14 Thus, the neuropsychiatric accompaniments of dementia are serious conditions that are increasingly becoming a focus of attention.

Several studies have estimated the prevalence of the neuropsychiatric symptoms of dementia. Depending on the method, it has been estimated that they affect 50% to 80% of persons with dementia in the course of the disease.2,15 The vast majority of studies were conducted in a clinical setting subject to referral bias that might overestimate the prevalence of neuropsychiatric symptoms.

Only 2 population-based studies have assessed the prevalence of neuropsychiatric symptoms in dementia. The first was conducted in England more than a decade ago and focused only on Alzheimer-type dementia.16-19 A more recent US study20 estimated that in the month before examination 61% of participants with dementia exhibited 1 or more of these symptoms. Apathy (27%), depression (24%), and agitation (24%) were the most common. Because this study was conducted in Utah in a rather homogeneous population, concerns have been raised about its generalizability. There are additional limitations to the population studies of neuropsychiatric symptoms in dementia. First, there has not been a replication of the US estimate. Second, neither study investigated the prevalence of clinically significant symptoms. Third, only the England study estimated the prevalence of symptoms from the onset of cognitive impairment. Fourth, neither study estimated the prevalence of symptoms involving sleeping or eating, both of which are now recognized in clinical settings as being of importance.

No study has assessed the prevalence of neuropsychiatric symptoms in MCI. Such an estimate is important for several reasons. The current definitions of MCI do not mention these symptoms, thus an estimate of prevalence might have definitional implications. Moreover, if MCI is a precursor to Alzheimer-type dementia, the prevalence of neuropsychiatric symptoms in MCI should be intermediate to that in cognitively healthy individuals and in persons with dementia. Such a finding would have implications for the understanding of the pathophysiology of these symptoms in both MCI and dementia.

We undertook the present analyses as part of the Cardiovascular Health Study (CHS) Cognition Study. We sought to estimate the prevalence of neuropsychiatric symptoms, including clinically significant symptoms, in the past month in a population-based panel of persons with dementia, including the prevalence of sleep and eating disturbances; neuropsychiatric symptoms, including clinically significant disturbances, in the past month in MCI; and neuropsychiatric symptoms from the onset of cognitive impairment in MCI or dementia.

METHODS
The CHS Cognition Study and Design Overview

The CHS and its methods have been described in detail elsewhere.21-23 This is a cohort study of individuals at least 65 years old randomly sampled from Medicare lists in 4 US communities, each site overseen by researchers at a nearby university. The communities include Washington County, Maryland (Johns Hopkins University), Forsyth County, North Carolina (Wake Forest University), Allegheny County, Pennsylvania (University of Pittsburgh), and Sacramento County, California (University of California at Davis). A total of 5201 participants were recruited in 1989-1990 and an additional 687 blacks were enrolled in 1992-1993. The institutional review board at each university approved the study, and each participant gave informed consent. Participants completed between 1 and 10 annual clinic visits until 1998-1999. Loss to follow-up in CHS, other than through death, was very low (<5%). The original aims of the CHS were to assess risk factors in elderly persons for cardiovascular outcomes, including angina, myocardial infarction, cardiac death, and stroke.

Data collected longitudinally at each annual visit included information on medical history, blood pressure, medications, physical function, social support, depression, and cognition using the Modified Mini-Mental State Examination,24 which is a cognitive battery widely used in epidemiologic studies, and the Digit Symbol Substitution Test.25 If an individual did not receive a clinical evaluation, then attempts were made to evaluate cognition using the Telephone Interview for Cognitive Status.26 For participants who died between examinations, we obtained further information using the Informant Questionnaire for Cognitive Decline in the Elderly27 and data concerning circumstances of death. The CHS also collected information for all hospitalizations, including a review of medical records and selected laboratory and clinical evaluations.

Between 1991-1994, 3660 participants received cerebral magnetic resonance imaging (MRI). Differences between those who completed the scan and those who did not have been reported elsewhere.28 Of the 3660, 3608 participants who completed a Modified Mini-Mental State Examination at the time of the MRI were designated for inclusion in the CHS Cognition Study (Figure 1). Of those who had an MRI, 1492 screened negative for dementia based on the screening procedure that was used. Of the remaining 2116, 707 were classified as having dementia, 577 as MCI, 826 as being cognitively healthy, and 6 unknown based on the CHS Cognition Study evaluation procedures. A subset of participants with dementia (n=362) or MCI (n=320) agreed to be rated on
the Neuropsychiatric Inventory (NPI) and constitute the study sample for these analyses.

Cognitive Evaluation

Fieldwork for the CHS Cognition Study, designed to evaluate dementia in a subset of CHS participants, was implemented during 1999-2000. Lopez et al. present further detail on the CHS Cognition Study. In brief, investigators performed a multistage screening and evaluation process on all eligible participants. In the first stage, participants were classified as being at low or high risk for dementia (risk screening), based upon previous cognitive testing during CHS clinic visits and medical history. Using data already collected, individuals at 3 of the centers deemed to be at high risk for dementia, of minority race, or having only limited cognitive data were identified for further evaluation. At 1 center (University of Pittsburgh), attempts to collect additional data were made on all participants regardless of risk. High risk for dementia was based on previous cognitive testing, changes in cognitive scores, nursing home admission, and history of stroke. High risk was defined as a Modified Mini-Mental State Examination score of less than 80 at 1 of their last 2 clinic visits in the study, a 5-point decline in the Modified Mini-Mental State Examination score from the time of MRI to last contact, a Telephone Interview for Cognitive Examination and completion of the NPI, or an Informant Questionnaire for Cognitive Decline and Memory Impairment and completion of the NPI. Study participants rated on the NPI included 320 participants with MCI, 362 with dementia, and a nonrepresentative subset (n = 142) of participants without MCI or dementia (not shown in figure or included in analyses; see “Methods”).

Classification of Dementia and MCI

All information was sent to the University of Pittsburgh center regardless of the diagnoses by the local neurologist or psychiatrist. A neurologist with extensive experience in dementia reviewed all cases from every center and reclassified these as dementia, MCI, or healthy. All cases classified as possible dementia locally or at the review were then reviewed by an adjudication committee composed of study neurologists and psychiatrists from all 4 CHS clinics.

Classification was based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) for dementia and National Institute for Neurologic Diseases and Stroke, Alzheimer Disease and Related Disorders.
NEUROPSYCHIATRIC SYMPTOMS IN DEMENTIA AND COGNITIVE IMPAIRMENT

Table 1. Demographic Characteristics of Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MCI (n = 320)</th>
<th>Dementia (n = 362)</th>
<th>Comparison of MCI and Dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>75 (5.0)</td>
<td>77 (5.0)</td>
<td>$t_{979} = 5.2$</td>
</tr>
<tr>
<td>White</td>
<td>76.0 (4.6)</td>
<td>77.5 (5.1)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>73.3 (5.4)</td>
<td>76.5 (5.7)</td>
<td></td>
</tr>
<tr>
<td>Sex, male</td>
<td>128 (40)</td>
<td>132 (37)</td>
<td>$\chi^2 = 0.76$</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older than mean age, No.</td>
<td>197</td>
<td>172</td>
<td>$\chi^2 = 9.95$</td>
</tr>
<tr>
<td>White</td>
<td>111 (56)</td>
<td>124 (72)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>86 (44)</td>
<td>48 (23)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>91 (73)</td>
<td>147 (77)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>32 (27)</td>
<td>43 (23)</td>
<td></td>
</tr>
<tr>
<td>Education, mean (SD), y</td>
<td>13.3 (4.8)</td>
<td>12.8 (5.1)</td>
<td>$t_{979} = 1.3$</td>
</tr>
</tbody>
</table>

* MCI indicates mild cognitive impairment.

Figure 2. Frequency Distribution of Number of Individual Neuropsychiatric Inventory (NPI) Symptoms in the Past Month in the 2 Groups

Assessment of Neuropsychiatric Symptoms

We used the NPI to define the presence and severity of neuropsychiatric symptoms. The NPI has wide acceptance as a measure of neuropsychiatric symptoms associated with cognitive disorders. It rates symptoms in 12 domains: delusions, hallucinations, agitation/aggression, depression, anxiety, euphoria, apathy, disinhibition, irritability, aberrant motor behavior, sleep, and eating. It is a fully structured interview, which obtains its information from an informant knowledgeable about the participant, and it focuses on observable symptoms and behaviors. Within each domain, NPI asks a screening question. If the screening question is answered in the negative, the interviewer moves to the next domain. If it is answered in the affirmative, specific neuropsychiatric symptoms are assessed within each domain. If any of these symptoms are present, they are rated on a 4-point frequency scale and a separate 5-point severity scale. The product of the frequency and severity scales within each domain produces a total domain score (range, 0-20). Individual domain scores are summed to produce a total NPI score. Domain scores of 4 or more or total NPI scores of 4 or more are indicative of clinical significance and are used as entry criteria for treatment trials of dementia-associated neuropsychiatric symptoms. In the clinical setting, such scores are associated with need for an intervention to manage the symptoms.

Informants were also asked to note whether neuropsychiatric symptoms had occurred from the onset of cognitive symptoms. The severity of symptoms before the past month was not rated due to concerns that the reliability of such ratings would be low.

The NPI was completed on 824 participants, 362 of whom were ultimately classified as having dementia and 320 classified as having MCI. A total of 142 were rated after the first-phase screening process because of cognitive decline or subnormal cognitive functioning but did not meet criteria for MCI or dementia. This was a sample biased toward individuals with cognitive disturbance of insufficient severity to meet criteria for MCI or dementia. This was a sample biased toward individuals with cognitive disturbance of insufficient severity to meet criteria for MCI or dementia. Rates of neuropsychiatric symptoms in this group would not be representative of other cognitively healthy elderly persons; hence, NPI findings from this group were not considered in the analyses. The NPI was also used in the Cache County Study, permitting comparisons of the 2 studies.

Analyses

Analyses compared participants with dementia to those with MCI and to published data on NPI symptoms from cognitively healthy elderly persons. We compared symptoms in the past month between the study groups with a fre-
frequency distribution of the number of individual symptoms. Then, we compared the prevalence of any 1 symptom in the past month. In these analyses, we separated mild symptoms within each domain (NPI score =0-3) from clinically significant symptoms (NPI score =4). These frequencies were compared using \(\chi^2 \) tests.

We then compared the prevalence of individual NPI symptoms from the onset of cognitive symptoms between the dementia and MCI groups. These comparisons were made for the presence of any disturbance, regardless of severity, because we did not have severity ratings to differentiate mild disturbances from clinically significant disturbances. These frequencies were also compared using \(\chi^2 \) tests.

Finally, to assess whether there were differences in NPI symptom prevalence between Alzheimer-type dementia and other dementia, we compared the prevalence of NPI symptoms in the past month in participants with Alzheimer-type dementia with participants with other types of dementia, using \(\chi^2 \) tests. Statistical analyses were performed using SPSS version 10 (SPSS Inc, Chicago, Ill) and \(P<.05 \) was the level of significance.

RESULTS

Table 1 shows demographic characteristics of the study groups. As expected, those with dementia were older than those with MCI. Among younger participants (mean age and below), those with dementia were less likely to be black compared with those with MCI. There was no difference in sex frequency between the groups and the 2 groups had comparable education.

NPI Symptoms in the Past Month

Figure 2 displays a frequency distribution of the number of NPI symptoms in the past month in the 2 study groups, as well as the mean (SD) of each distribution. There was an increase in the number of symptoms from MCI to dementia. Slightly more than half the MCI participants exhibited no neuropsychiatric symptoms. In contrast, only a minority of dementia participants were symptom free. About 55% of the dementia participants reported 2 or more, and 44% reported 3 or more symptoms.

Table 2 compares the prevalence of individual NPI symptoms in the past month by group. We report rates for any symptom (NPI \(>0 \)), for clinically significant symptoms (NPI \(\geq 4 \)) by domain, and for the NPI as a whole. Using \(\chi^2 \) tests, the 2 groups were compared on the proportion of participants in each group with NPI scores of 0, 1-3, or 4 and higher. Table 2 also includes prevalence estimates for individual NPI symptoms (NPI \(>0 \)) in cognitively healthy participants from the Cache County Study. Approximately 75% of participants with dementia exhibited 1 or more NPI symp-

<table>
<thead>
<tr>
<th>Table 2. Prevalence of Any NPI Disturbance and of NPI Symptoms Compared With Prevalence Estimates in the Population Without Dementia From the Cache County Study*</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Population (Cache County Study)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Delusions</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Hallucinations</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Agitation/aggression</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Depression</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Anxiety</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Euphoria</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Apathy</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Disinhibition</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Irritability</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Aberrant motor behavior</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Sleep</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
<tr>
<td>Eating</td>
</tr>
<tr>
<td>Any symptom (NPI (>0))</td>
</tr>
<tr>
<td>Disturbance score of (\geq 4)</td>
</tr>
</tbody>
</table>

*NPI indicates Neuropsychiatric Inventory; MCI, mild cognitive impairment; and NA, not available. Total NPI is not a sum of the columns because many people had more than 1 symptom.

†Data from Lyketsos et al.16
Table 3. Cumulative Prevalence of Individual NPI Symptoms From the Onset of the Cognitive Symptoms in the 2 Groups

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>MCI (n = 320)</th>
<th>Dementia (n = 362)</th>
<th>χ² Test†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delusions</td>
<td>15 (4.7)</td>
<td>109 (28.1)</td>
<td>75.6</td>
</tr>
<tr>
<td>Hallucinations</td>
<td>8 (2.5)</td>
<td>59 (16.3)</td>
<td>37.1</td>
</tr>
<tr>
<td>Agitation/aggression</td>
<td>47 (14.7)</td>
<td>145 (40.1)</td>
<td>54.4</td>
</tr>
<tr>
<td>Depression</td>
<td>84 (26.3)</td>
<td>158 (43.6)</td>
<td>23.0</td>
</tr>
<tr>
<td>Anxiety</td>
<td>33 (10.3)</td>
<td>92 (25.4)</td>
<td>27.9</td>
</tr>
<tr>
<td>Euphoria</td>
<td>4 (1.3)</td>
<td>1 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Apathy</td>
<td>58 (18.1)</td>
<td>164 (45.3)</td>
<td>61.2</td>
</tr>
<tr>
<td>Disinhibition</td>
<td>13 (4.1)</td>
<td>66 (18.2)</td>
<td>33.7</td>
</tr>
<tr>
<td>Irritability</td>
<td>53 (16.6)</td>
<td>123 (34.0)</td>
<td>28.3</td>
</tr>
<tr>
<td>Aberrant motor behavior</td>
<td>13 (4.1)</td>
<td>62 (17.1)</td>
<td>31.2</td>
</tr>
<tr>
<td>Sleep</td>
<td>57 (17.8)</td>
<td>109 (30.1)</td>
<td>16.9</td>
</tr>
<tr>
<td>Eating</td>
<td>56 (17.5)</td>
<td>112 (30.9)</td>
<td>18.8</td>
</tr>
<tr>
<td>Any 1 NPI disturbance</td>
<td>139 (49.6)</td>
<td>233 (64.0)</td>
<td>88.8</td>
</tr>
</tbody>
</table>

†NPI indicates Neuropsychiatric Inventory; MCI, mild cognitive impairment. For any 1 NPI disturbance, the total number of symptoms for MCI was 280 and for dementia was 291.
P<.001 for all symptoms except for euphoria (P = .51, exact test).

Symptoms, with 62% clinically significant. Participants with MCI had lower rates, with 43% exhibiting any 1 symptom and 29% exhibiting clinically significant. There was an incremental increase in frequency of neuropsychiatric symptoms across groups. As expected, the lowest frequency was observed in cognitively healthy participants, intermediate frequency in MCI, and highest frequency in dementia. In all cases, the prevalence of NPI symptoms was significantly higher in participants with dementia than in those with MCI.

Among participants with dementia, the most frequent symptom was apathy (36%), followed by depression (32%), and agitation/aggression (30%). Apathy was the most frequent clinically significant (disturbance score ≥4) neuropsychiatric symptom, followed by sleep disturbance and depression. Most symptoms present were clinically significant.

In the MCI group, the frequency of most symptoms was intermediate between the cognitively healthy comparison population and the dementia participants. The most frequent symptom was depression (20%), followed by apathy (15%) and irritability (15%). The most frequent clinically significant symptom (disturbance score ≥4) was sleep disturbance (8.8%), followed by irritability (7.5%), depression (6.3%), apathy (6.3%), and eating disturbance (6.3%). Using χ² tests, the rate of neuropsychiatric symptoms in MCI was compared with that among non-demented elderly persons from the Cache County Study, using the published data from the latter study. Given that multiple comparisons were made, we applied the Bonferroni adjustment requiring an α of .001 for statistical significance. The prevalence of any 1 symptom was significantly higher in the MCI participants of CHS than in the elderly population of the Cache County Study (χ² = 81.2, P < .001). When individual disturbances were compared, the prevalence among MCI participants in the CHS was significantly higher for agitation/aggression (χ² = 26.5, P < .001), depression (χ² = 33.5, P < .001), apathy (χ² = 41.7, P < .001), irritability (χ² = 28.6, P < .001), and aberrant motor behavior (χ² = 13.2, P < .001). Differences between the 2 groups were of marginal significance for anxiety (χ² = 3.65, P = .06) and disinhibition (χ² = 5.17, P = .02), and not significant for delusions, hallucinations, or euphoria (in all cases, P > .51). Euphoria was rare in all 3 groups, as expected.

NPI Symptoms From the Onset of Cognitive Impairment

Eighty percent of dementia participants and almost 50% of MCI participants exhibited at least 1 NPI symptom from the onset of cognitive symptoms (Table 3). Apathy and depression were the 2 most common, followed by agitation/aggression. The prevalence of delusions or hallucinations was lower than the most common symptoms. In all cases, there was a significant increase in prevalence from MCI to dementia. The meaning of these data is uncertain because there are no published estimates of the cumulative prevalence of NPI symptoms in cognitively healthy elderly persons aged 65 or older from the Cache County Study or elsewhere. However, the prevalence rates in Table 3 for neuropsychiatric symptoms in both MCI and dementia are much higher than past-month population estimates from the Cache County Study (Table 2) and prevalence estimates for specific mental disorders from the US Epidemiologic Catchment Area study (anxiety disorders, 5.5%; affective disorders, 2.5%; schizophrenia, 0.1%).

Comparison of Alzheimer-Type Dementia and Other Types of Dementia

Table 4 contains the prevalence of symptoms in the past month among participants with National Institute for Neurologic Diseases and Stroke, Alzheimer Disease and Related Disorders Association probable or possible Alzheimer disease compared with those with other dementia. Of the 104 participants with non-Alzheimer disease dementia, the expert consensus panel concluded that 86 had vascular dementia, and 6 had dementia due to Parkinson disease. The remaining 12 had a range of different types of dementia etiologies, such as postanoxic dementia, posttraumatic dementia, frontotemporal degeneration and others. Table 4 compares the frequency of mild symptoms with clinically significant symptoms. There were no significant differences between participants with Alzheimer-type dementia.
COMMENT

These findings confirm previous estimates of high prevalence of neuropsychiatric symptoms in dementia, with 60% of participants with dementia exhibiting clinically significant symptoms in the past month, and more than 80% exhibiting any symptom from the onset of cognitive impairment. Apathy, depression, and agitation were the most frequent. We also report estimates for sleep and eating disturbances, which have not been previously reported. Prevalence estimates were similar in Alzheimer and non-Alzheimer dementia, with the exception of more aberrant motor behavior in Alzheimer-type dementia, consistent with clinical reports that wandering is more frequent in Alzheimer-type dementia. Our findings confirm that the majority of neuropsychiatric symptoms in dementia are of clinical significance based on their severity and because of co-occurrence of multiple symptoms with more than half of participants with dementia exhibiting 2 or more neuropsychiatric symptoms in the past month.

We report the first population-based estimates to our knowledge of neuropsychiatric symptoms in MCI. This is a group of individuals with cognitive impairment not severe enough to warrant a diagnosis of dementia. Recent evidence suggests that many, if not most, eventually develop Alzheimer-type dementia, so that MCI is a precursor syndrome to dementia. The finding that neuropsychiatric symptoms in MCI have a prevalence intermediate to that in healthy participants and those with dementia, further supports this hypothesis. Mild cognitive impairment may not be a separate category of disturbance, such as age-associated or age-appropriate memory loss, but is rather on a continuum between healthy and dementia.

These estimates are comparable with those reported in the other 2 population-based studies. Thus, the epidemiologic evidence supports the findings from clinical studies indicating that neuropsychiatric symptoms afflict almost all patients with dementia over the course of their illness. Similarly, neuropsychiatric symptoms afflict almost 50% of patients with MCI.

Our study limitations include the sampling method in that the participants with dementia were ascertained from the members of an original random sample of elderly individuals in 4 communities who agreed to have an MRI. Those examined were over-sampled for the presence of stroke, minority status, and unknown cognitive scores. Thus, the original sampling frame was not fully representative of the population and may have biased the prevalence estimates for NPI symptoms among those with dementia and MCI. However, any such bias would be

Table 4. Prevalence of Individual NPI Symptoms in the Past Month in Participants With Alzheimer-Type Dementia Compared With Other Types of Dementia*

<table>
<thead>
<tr>
<th></th>
<th>Alzheimer-Type Dementia (n = 258)</th>
<th>Other Dementia (n = 104)</th>
<th>Comparison of Alzheimer-Type Dementia and Other Dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (%)</td>
<td></td>
<td>χ² Test</td>
</tr>
<tr>
<td>Delusions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>19 (7.4)</td>
<td>8 (7.7)</td>
<td>2.205</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>31 (12.0)</td>
<td>7 (6.7)</td>
<td></td>
</tr>
<tr>
<td>Hallucinations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>13 (5)</td>
<td>7 (6.7)</td>
<td>1.67</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>15 (5.8)</td>
<td>3 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Agitation/aggression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>43 (16.7)</td>
<td>14 (13.5)</td>
<td>2.05</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>41 (15.9)</td>
<td>12 (11.5)</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>41 (15.9)</td>
<td>18 (17.3)</td>
<td>0.355</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>40 (15.5)</td>
<td>18 (17.3)</td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>29 (11.2)</td>
<td>14 (13.5)</td>
<td>0.352</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>25 (9.7)</td>
<td>10 (9.6)</td>
<td></td>
</tr>
<tr>
<td>Euphoria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>5 (1.9)</td>
<td>1 (1)</td>
<td>0.631</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>4 (1.6)</td>
<td>1 (1)</td>
<td></td>
</tr>
<tr>
<td>Apathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>21 (8.1)</td>
<td>12 (11.5)</td>
<td>1.35</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>72 (27.9)</td>
<td>25 (24)</td>
<td></td>
</tr>
<tr>
<td>Disinhibition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>16 (6.2)</td>
<td>5 (4.8)</td>
<td>3.215</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>14 (5.4)</td>
<td>11 (10.6)</td>
<td></td>
</tr>
<tr>
<td>Irritability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>38 (14.7)</td>
<td>15 (14.4)</td>
<td>1.18</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>29 (11.2)</td>
<td>16 (15.4)</td>
<td></td>
</tr>
<tr>
<td>Aberrant motor behavior</td>
<td>Mild disturbance (0-3)</td>
<td>14 (5.4)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>26 (14.0)</td>
<td>7 (6.7)</td>
<td></td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>19 (7.4)</td>
<td>8 (7.7)</td>
<td>1.65</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>47 (18.2)</td>
<td>25 (24.0)</td>
<td></td>
</tr>
<tr>
<td>Eating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>9 (3.5)</td>
<td>5 (4.8)</td>
<td>1.82</td>
</tr>
<tr>
<td>Disturbance score ≥4</td>
<td>37 (14.3)</td>
<td>20 (19.2)</td>
<td></td>
</tr>
<tr>
<td>Total NPI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild disturbance (0-3)</td>
<td>36 (14)</td>
<td>11 (10.6)</td>
<td>0.75</td>
</tr>
<tr>
<td>NPI score ≥4</td>
<td>157 (60.9)</td>
<td>66 (63.5)</td>
<td></td>
</tr>
</tbody>
</table>

*NPI indicates Neuropsychiatric Inventory.
 system and lead to an underesti-
mate of the prevalence of disturbance. A second limitation was that the NPI, while reliable and valid, did not di-
rectly evaluate participants but rather relied on information obtained from an
informant interview. Results may have been different if a clinical diagnosis of
neuropsychiatric symptoms had been used. However, the agreement be-
tween this study and studies where clinical evaluations were used is reas-
suring. 5–10

What is the significance of the high prevalence of neuropsychiatric sym-
ptoms in dementia and MCI? It sup-
ports the status of MCI as an interme-
diate condition between healthy
cognition and dementia. With regard to
dementia, there are 2 notable impli-
cations. The first involves the patho-
physiology of neuropsychiatric symp-
toms in dementia. These disturbances
may be the consequences of damage to
the brain brought about by underly-
ing brain disease. For example, in Alz-
heimer disease, delusions have been as-
associated with parietal hypoperfusion on
single-photon emission computed to-
mography, depression with damage to
noradrenergic or serotonergic brain nu-
 clei, and aggression with damage to
serotonergic nuclei in the context of
noradrenergic or serotonergic brain nu-
 clei. Thus, the study of neuropsychiatric symp-
toms in dementia offers an opportunity for further un-
derstanding of brain-behavior rela-
tionships. Studies have focused on clinical
pathologic correlations using brain im-
aging or neuropathology. Recent ad-
vances will also allow us to add ge-
nic study to estimate the modifying
factors of the prevalence of neuropsychiatric symptoms.32–35 Antidepressants for depression, 32–35
anticonvulsants for agitation, 35,36
B-
adrenergic blockers for aggression, 38
and cholinesterase inhibitors for be-
havioral symptoms. 59,61 Careful recog-
nition and appropriate treatment of the
neuropsychiatric symptoms associ-
ated with MCI and dementia is likely to
provide substantial benefits to pa-
tients and caregivers. 5 Dementia and
MCI continue to be poorly recognized
in primary care. 62 and neuropsychiatric
symptoms are often not recog-
nized until they have become severe
leading to hospitalization or institu-
tionalization.

In summary, these findings further confirm the high prevalence of neuro-
psychiatric symptoms in dementia and indicate a moderate prevalence in MCI. Clinical evaluations of patients with
suspected MCI and dementia must in-
clude specific assessment of and treat-
ment for such symptoms. This also has
significant implications for further stud-
ies of the pathophysiology and treat-
ment of neuropsychiatric symptoms in
 cognitively impaired elderly people.

Author Affiliations: Department of Psychiatry and Be-
havioral Sciences, School of Medicine, Johns Hop-
kins University, Baltimore, Md (Dr Lyketsos); Depart-
ments of Neurology and Psychiatry, School of
Medicine, The University of Pittsburgh, Pittsburgh, Pa
(Drs Lopez and DeKosky); Department of Psychiatry,
School of Medicine, Wake Forest University, Winsto-
nsalem, NC (Dr Jones); and Department of Epidem-
iology, School of Medicine, University of Washington
(Dr Fitzpatrick), Geriatric Research Education and Cli-
 nical Center, Department of Veterans Affairs Puget
Sound Health Care System, and Department of Psy-
chiatry and Behavioral Sciences, School of Medicine,
University of Washington (Dr Breitner), Seattle.

Author Contributions: Study concept and design: Lyketsos, Lopez, Breitner.
Acquisition of data: Lyketsos, Lopez, Fitzpatrick, Breitner.
Analysis and interpretation of data: Lyketsos, Jones, Fitzpatrick, Breitner, DeKosky.
Critical revision of the manuscript for important
intellectual content: Lyketsos, Lopez, Jones, Fitzpatrick, Breitner, DeKosky.
STATISTICAL ANALYSIS: Fitzpatrick.
OBTAINED FUNDING: Lyketsos, Breitner, DeKosky.
ADMINISTRATIVE, TECHNICAL, OR MATERIAL SUPPORT: Lopez, Jones, Fitzpatrick, DeKosky.
STATISTICAL ANALYSIS: Lyketsos, Breitner, DeKosky.
Study supervision: Lyketsos, Lopez, DeKosky.
Cardiovascular Health Study Participating Insti-
tutions and Principal Staff: Forsyth County, NC (Wake
Forest University School of Medicine): Gregory L.
Burke, Sharon Jackson, Curt D. Furburg, David S.
Lefkowitz, Mary F. Lyles, Carol Nunzi, John Chen, Bever-
yly Tucker, Harriet Welett. Forsyth County, NC (Wake
Forest University, Echocardiography Reading Cen-
ter): Farida Rautaharju, Pentti Rautaharju. Sacramento,
County, Calif (University of California, Davis/UC,
Sacramento): William Bonekamp, Charles Bernick, Michael Buono-
core, Mary Haan, Calvin Hirsch, Lawrence Laslett, Mar-
Washington County, Md (The Johns Hopkins Uni-
versity): Linda P. Fried, Neil R. Powe, Paulo Chaves,
Thomas R. Price, Joel G. Hill, Pat Crowley, Joyce
Chabot. Washington County, Md (The Johns Hop-
kins University, MRI Reading Center): Norman
Beauchamp, Linda Wilkins. Allegheny County, PA (Uni-
versity of Pittsburgh): Diane G. Ives, Charles A. Jun-
greis, Steve Goldstein, Lewis H. Kuller, Elaine Mei-
lahn, Roberta Moyer, Anne Newman, Richard Schulz,
University of California, Irvine (Echocardiography
Reading Center [baseline]): Hoda Antun-Culver, Ju-
lius M. Gardin, Margaret Knoll, Tom Kurosaki, Nathan
Wong, Georgetown Medical Center, Washington, DC
(Echocardiography Reading Center [follow-up]): John
Gottdiener. New England Medical Center, Boston,
Mass (Ultrasound Reading Center): Daniel H. O’Leary,
Joseph F. Polak, Laurie Funk. University of Vermont,
Burlington (Central Blood Analysis Laboratory): Elaine
Cornell, Mary Cushman, Russell P. Tracy. University
of Arizona, Tucson (Pulmonary Reading Center): Paul
Enright. University of Washington, Seattle (Coordin-
ating Center): Alice Arnold, Mike Dermond, Norma
Dermond, Annette L. Fitzpatrick, Joanna Kincaid, Richard A.
Kronmal, Bonnie Lind, Ellen O’Meara, Bruce M.
Psaty, David S. Siscovick, Patricia W. Wahl. NHLBI
Project Office: Diane Bild, Teri A. Manolio, Peter J.
Savage, Patricia Smith.

Funding/Support: This work was supported by grants
R01 AG15928-02 from the CHS Cognition Study
ancillary, N01-HC-85079 through N01-HC-85086,
N01-HC-35129, and N01-HC-15103 from the Na-
tional Heart, Lung, and Blood Institute; 1R01-
MH56511 from the Depression in Alzheimer Disease
Study, and R01-AG11380 from the Cache County
Study of Memory in Aging.

References

1. Brookmeyer R, Gray S, Kawas C. Projections of Alz-
heimer’s disease in the United States and the public
health impact of delaying disease onset. Am J Public

2. Rabins PV, Blacker D, Cohen E, et al. Practice guide-
tance parameters: early detection of dementia: mild cog-
nitive impairment (an evidence-based review). Neu-

nitive impairment represents early-stage Alzheimer dis-

and psychological signs and symptoms of dementia. Int

5. Rabins PV, Blacker D, Cohen E, et al. Practice guide-
line for the treatment of patients with Alzheimer’s
disease and other dementias of late life. Int Psychogeriatr.

6. Jeste DV, Finkel SI. Psychosis and Alzheimer’s dis-

7. Lyketsos CG, Rabins PV, Breitner JCS. An evidence-
based proposal for the classification of neuropsychi-
atr ic disturbance in Alzheimer’s disease. Int J Geriatr

8. Olin JT, Schneider LS, Katz IS, et al. National In-
tiute of Mental Health: provisional diagnostic crite-
ria for depression of Alzheimer disease. Am J Geriatr
NEUROPSYCHIATRIC SYMPTOMS IN DEMENTIA AND COGNITIVE IMPAIRMENT

