THE MANAGEMENT OF MILD TRAUMATIC BRAIN INJURY (MTBI; eg, concussion, defined as a traumatically induced alteration in mental status not necessarily resulting in loss of consciousness) in athletics is currently one of the most compelling challenges in sports medicine. Despite the high prevalence and potentially serious outcomes associated with concussion in athletes, there is little systematic research examining risk factors and short- and long-term outcomes.

Context Despite the high prevalence and potentially serious outcomes associated with concussion in athletes, there is little systematic research examining risk factors and short- and long-term outcomes.

Objectives To assess the relationship between concussion history and learning disability (LD) and the association of these variables with neuropsychological performance and to evaluate postconcussion recovery in a sample of college football players.

Design, Setting, and Participants A total of 393 athletes from 4 university football programs across the United States received preseason baseline evaluations between May 1997 and February 1999. Subjects who had subsequent football-related acute concussions (n = 16) underwent neuropsychological comparison with matched control athletes from within the sample (n = 10).

Main Outcome Measures Clinical interview, 8 neuropsychological measures, and concussion symptom scale ratings at baseline and after concussion.

Results Of the 393 players, 129 (34%) had experienced 1 previous concussion and 79 (20%) had experienced 2 or more concussions. Multivariate analysis of variance yields significant main effects for both LD (P < .001) and concussion history (P = .009), resulting in lowered baseline neuropsychological performance. A significant interaction was found between LD and history of multiple concussions and LD on 2 neuropsychological measures (Trail-Making Test, Form B [P = .007] and Symbol Digit Modalities Test [P = .009]), indicating poorer performance for the group with LD and multiple concussions compared with other groups. A discriminant function analysis using neuropsychological testing of athletes 24 hours after acute in-season concussion compared with controls resulted in an overall 89.5% correct classification rate.

Conclusions Our study suggests that neuropsychological assessment is a useful indicator of cognitive functioning in athletes and that both history of multiple concussions and LD are associated with reduced cognitive performance. These variables may be detrimentally synergistic and should receive further study.
CONCUSSION IN COLLEGE FOOTBALL PLAYERS

Methods

Subjects

Participants in this study consisted of 393 male college football players from 4 Division IA football programs: Michigan State University, East Lansing (n = 119); the University of Florida, Gainesville (n = 106); the University of Pittsburgh, Pittsburgh, Pa (n = 85); and the University of Utah, Salt Lake City (n = 83).

At the initial preseason baseline session, the following self-reported data were collected: age, playing position, SAT/ACT scores (Scholastic Aptitude Test/American College Testing, ie, college entrance examination scores), history of LD, neurological history (eg, central nervous system neoplasm or epilepsy), history of psychiatric illness (eg, depression and/or mania or anxiety), history of alcohol and/or drug abuse, prior sports played, and history of concussion. Educational records at each institution were used to verify a documented history of diagnosed LD. A standardized concussion history form was administered at baseline to obtain detailed information regarding previous concussions, year of concussion, description of incident, nature and duration of relevant symptoms (eg, confusion and/or disorientation, retrograde and/or anterograde amnesia, and loss of consciousness), neuroimaging results (if any), and days lost from participation in football (if any). Athletes who reported amnesia were asked to provide any known collateral information from the athletic trainer, sports-medicine physician, or other source familiar with the details of the incident. All previous concussions were classified using the practice parameter of the American Academy of Neurology.19

©1999 American Medical Association. All rights reserved.
CONCUSSION IN COLLEGE FOOTBALL PLAYERS

consists of 20 symptoms commonly associated with concussion (eg, headache, dizziness, and trouble falling asleep), with symptoms ranging from none (score, 0) to severe (score, 6).

Postconcussion Evaluation. Athletes who sustained a concussion during the course of a season underwent serial neuropsychological evaluations following the incident (within 24 hours of the incident, and at days 3, 5, and 7 postinjury). Concussion was defined according to the American Academy of Neurology practice parameter.29 Thus, players experiencing a traumatically induced alteration in mental status, not necessarily resulting in a loss of consciousness, were included. Athletic trainers initially identified the majority of suspected concussions, and respective team physicians performed the examinations and made the final decisions. Once the diagnosis was established, neuropsychological testing was administered as soon as possible following injury (within 24 hours in all cases). The neuropsychological tests and self-report inventory used in the postinjury phase were identical to those used at baseline, although alternate and reliable forms of the HVLT and COWAT were administered to minimize learning effects associated with these measures.

Football players from within the sample served as controls. Control athletes were matched with athletes who sustained concussion according to ACT/SAT scores, history of LD, history of previous concussion, institution, and playing position. In addition, to control for exertion, each control athlete was tested within the same time frame as the athletes who experienced concussion (eg, following a game or practice). Within the context of these variables, it was possible for controls to be matched to more than 1 player with concussion. No control athlete experienced a concussion during the course of the study. Controls were excluded from further study.

Data Analysis

Data from the 4 universities were pooled and analyzed using Statistica Version 5.1 statistical software for Windows.23 To explore the relationship between prior history of concussion, diagnosis of LD, and neuropsychological baseline performance, multiple analysis of variance (MANOVA) was performed. Concussion history (no prior concussion vs 1 vs ≥2 concussions) and LD (positive or negative diagnosis) were entered as independent variables, and cognitive and symptom total scores were entered as dependent measures. The MANOVA design was selected to allow an analysis of performance differences between the athletes with different concussion and LD histories, across multiple neuropsychological domains. This design also permitted an assessment of possible interaction effects between concussion and LD histories.

For in-season (postconcussion) data, a discriminant function classification analysis was conducted to determine the accuracy of the neuropsychological test battery in separating athletes with concussions from control athletes within 24 hours of concussion. The 8 tests constituting the neuropsychological test battery were used as predictor variables, and membership in the group with concussions or control group was used as the dependent (grouping) variable.

To provide preliminary information regarding the recovery pattern of athletes with concussions relative to the control group and to their own baseline performance, standard scores were created to convert the selected neuropsychological test scores to a common metric. These standard scores were constructed so that baseline performance for each group would have a mean of 100 and SD of 15.21 Group differences of one-half SD (7.5 standard score units) are considered to reflect at least a moderate difference between the means.22 Any deviation from 100 indicates a change in performance relative to baseline for each group. The recovery pattern of players who sustained concussion across different time intervals was evaluated by standardizing all neuropsychological test results and comparing performance of the athletes with concussion with controls' performance within 24 hours, and at 3, 5, and 7 days postinjury.

RESULTS

Demographic Data and Concussion History

The multiuniversity sample included 393 male football players with a mean (SD) age of 20.4 (1.7) years and 2.6 (1.3) mean (SD) years in college. Forty-six percent of the sample was African American, 48% European American, 4% Polynesian American, 1% Asian American, and 1% Hispanic American. Of the 393 players, 6% (n = 25) were quarterbacks; 8% (n = 33), running backs; 13% (n = 52), wide receivers; 16% (n = 64), offensive linemen; 6% (n = 23), tight ends; 17% (n = 67), defensive backs; 16% (n = 61), defensive linemen; 13% (n = 48), linebackers; and 5% (n = 20), kickers.

Of the players completing the ACT examination to qualify for college admission (n = 180), the mean (SD) score was 20.0 (1.7). Of those qualifying with the SAT (n = 200), the mean (SD) score was 952.9 (149.1). College admission scores were missing for 13 individuals. Three players in the sample reported a documented history of diagnosed psychiatric illness (eg, bipolar disorder and major depression). These players completed the baseline evaluation, but were excluded from further study. No player in the sample reported a diagnosis of major neurological disorder or history of abuse of alcohol or other drugs.

Forty-six percent (n = 179) of the sample reported no prior history of concussion, 34% (n = 129) reported experiencing 1 concussion of any grade, and 20% (n = 79) reported a history of 2 or more sustained concussions (range, 2-10) of any grade. A significant relationship was found between total years participating in football and total number of concussions sustained (r = 0.15; P = .02). Quarterbacks (17 of 25) and tight ends (15 of 23) had the highest rates of prior concussion (68% and 65%, respectively). Running backs–fullbacks (11 of 33) and kickers–punters experienced the lowest rates of prior concussion (33% and 46%, respectively).
The prevalence of LD within the total sample of 393 athletes was 13.5% (n = 53). Of the players with no history of concussion (n = 179), 10.6% (n = 19) had a diagnosed LD; of those who had experienced 1 prior concussion (n = 129), 14.7% (n = 19) had diagnosed LD, and of those who had experienced multiple concussions (n = 79), 19.0% (n = 15) had diagnosed LD. Although these data suggest a possible trend between history of LD and history of multiple concussions, this relationship was not statistically significant ($\chi^2 = 3.74; P = .15$).

Previous Concussions, LD History, and Baseline Neuropsychological Performance

The MANOVA yielded significant main effects for both LD (F = 4.57; P < .001) and concussion history (F = 1.91; P = .009) on neuropsychological test results, which indicated that both of these variables were significantly related to overall neuropsychological performance. The interaction of LD and concussion history was not significant (F = 1.17; P = .28). A follow-up series of univariate F tests was completed to identify the specific neuropsychological measures that accounted for the significant MANOVA. Tests for the LD main effect were Trails B (F = 15.98; P < .001); SDMT (F = 22.9; P < .001); COWAT (F = 11.6; P < .001); and Hopkins delayed memory (F = 11.8; P < .001). For the history of concussion main effect, significant tests included Trails B (F = 6.1; P = .002); SDMT (F = 7.8; P < .001); and total symptoms reported (F = 4.6; P = .01).

To evaluate concussion group differences on the neuropsychological tests, additional post hoc analyses were conducted using the Tukey Honest Significant Difference test for unequal subjects. The table presents the group means (SDs) for athletes. The group with no history of concussion reported fewer symptoms than both the single concussion group (P = .04) and the multiple concussion group (P < .001) on the concussion symptom inventory. Baseline symptoms increased as the number of concussions increased. On Trails B, the multiple concussion group performed significantly worse at baseline than the group with no history of concussion (P = .02) and the single concussion group (P < .001). Baseline data also differed significantly on the SDMT with the multiple concussion group performing worse than both the group with no history of concussion (P = .008) and the single concussion group (P < .001). These findings are not attributed to preexisting group differences in terms of aptitude as the multiple concussion group had higher SAT and ACT scores than did the group with no history of concussion and the single concussion group. The table presents demographic and neuropsychological test data for the group with LD and the group without LD.

To investigate the interplay between concussion history and LD on baseline neuropsychological test performance, a concussion history and LD

Table. Neuropsychological and Symptom Baseline Results for Concussion and Learning Disability Groupings

<table>
<thead>
<tr>
<th>Concussion History, No.</th>
<th><2</th>
<th>≥2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>332</td>
<td>54</td>
</tr>
<tr>
<td>Yes</td>
<td>386</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean SAT/ACT scores</th>
<th>928.8/20.2</th>
<th>967.5/21.3</th>
<th>978.9/20.9</th>
<th>964.7/21.1</th>
<th>881.0/18.5</th>
<th>952.9/20.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total years in football</td>
<td>8.1 (3.1)</td>
<td>8.6 (2.9)</td>
<td>9.5 (2.4)</td>
<td>8.5 (3.1)</td>
<td>9.2 (2.1)</td>
<td>9.6 (2.8)</td>
</tr>
<tr>
<td>Symptom Total</td>
<td>7.9 (10.9)</td>
<td>10.6 (12.1)</td>
<td>15.3 (17.1)</td>
<td>9.2 (12.3)</td>
<td>12.4 (16.5)</td>
<td>10.3 (12.6)</td>
</tr>
<tr>
<td>Hopkins Total</td>
<td>24.6 (3.7)</td>
<td>24.9 (4.0)</td>
<td>24.1 (4.6)</td>
<td>25.0 (4.1)</td>
<td>24.1 (3.4)</td>
<td>24.6 (4.0)</td>
</tr>
<tr>
<td>Hopkins Delay</td>
<td>8.0 (1.9)</td>
<td>8.1 (2.1)</td>
<td>7.7 (2.1)</td>
<td>8.4 (2.0)</td>
<td>7.4 (2.0)</td>
<td>7.8 (2.0)</td>
</tr>
<tr>
<td>Trail-Making Test, Form A</td>
<td>21.2 (6.0)</td>
<td>19.9 (5.2)</td>
<td>22.1 (6.6)</td>
<td>21.0 (5.8)</td>
<td>21.0 (6.8)</td>
<td>21.0 (6.9)</td>
</tr>
<tr>
<td>Trail-Making Test, Form B</td>
<td>55.3 (15.4)</td>
<td>51.2 (16.4)</td>
<td>62.6 (23.2)</td>
<td>51.2 (15.9)</td>
<td>60.7 (26.3)</td>
<td>55.4 (17.3)</td>
</tr>
<tr>
<td>Digit Span Test</td>
<td>15.3 (3.8)</td>
<td>16.3 (4.1)</td>
<td>16.0 (3.8)</td>
<td>16.3 (3.9)</td>
<td>15.4 (3.9)</td>
<td>15.8 (3.9)</td>
</tr>
<tr>
<td>Symbol Digit Modalities Test</td>
<td>56.9 (8.7)</td>
<td>59.2 (8.9)</td>
<td>52.8 (9.2)</td>
<td>59.4 (8.6)</td>
<td>53.6 (9.1)</td>
<td>56.8 (8.9)</td>
</tr>
<tr>
<td>Grooved Pegboard Test, Dominant Hand</td>
<td>65.6 (10.0)</td>
<td>68.0 (10.8)</td>
<td>69.3 (12.4)</td>
<td>66.7 (10.9)</td>
<td>68.2 (10.2)</td>
<td>67.1 (10.7)</td>
</tr>
<tr>
<td>Grooved Pegboard Test, Nondominant Hand</td>
<td>72.3 (11.7)</td>
<td>74.2 (11.9)</td>
<td>75.2 (12.4)</td>
<td>73.0 (12.0)</td>
<td>74.8 (11.0)</td>
<td>73.5 (11.9)</td>
</tr>
<tr>
<td>Controlled Oral Word Association Test Total</td>
<td>37.0 (9.4)</td>
<td>38.0 (8.6)</td>
<td>37.6 (10.0)</td>
<td>39.8 (9.1)</td>
<td>35.2 (9.8)</td>
<td>37.5 (9.3)</td>
</tr>
</tbody>
</table>

* Data are presented as mean (SD) unless otherwise indicated. Higher scores represent better performance for Hopkins Total, Hopkins Delay, Digit Span, Symbol Digit Modalities, and Controlled Oral Word Association Tests. Lower test scores represent better performance for Symptom Total, Trail-Making Tests, Forms A and B; and Grooved Pegboard Test, Dominant Hand and Nondominant Hand. LD indicates Learning Disability.

* Of the 393 athletes, 7 were excluded because baseline data were incomplete.

* SAT indicates Scholastic Aptitude Test; ACT, American College Testing.

* Hopkins Total is equivalent to the total delay score on the HMT.

* A value for post hoc comparison (no concussion vs 1 concussion) was .05 using Tukey Honest Significant Difference (THSD).

* A value for post hoc comparison (no concussion vs ≥2 concussions) was .01 using THSD.

* A value for post hoc comparison (no concussion vs 1 concussion) was .01 using THSD.
interaction term was constructed. Univariate F tests for all 10 neuropsychological variables demonstrated statistically significant interactions for Trails B (F = 4.99; \(P = .007 \)) and SDMT (F = 4.74; \(P = .009 \)). In both cases, athletes with a history of multiple concussions and LD performed significantly worse than did athletes with no history of LD who had experienced multiple concussions (FIGURE 1).

In-Season Concussions

Nineteen players in the study sample were diagnosed by team medical staff as sustaining a concussion during the course of the 1997-1999 seasons. Thirteen individuals sustained a grade 1 concussion (mental status abnormalities resolved within 15 minutes), 4 athletes sustained a grade 2 concussion (mental status abnormalities that lasted longer than 15 minutes, but resolved within 45 minutes), and 2 athletes sustained a grade 3 concussion (brief [approximately 5-10 seconds] loss of consciousness). The time between baseline testing and in-season concussions ranged from 5 weeks to nearly 18 months.

The group with concussions consisted of 16 athletes who had completed all of the neuropsychological measures (3 athletes were excluded because they either missed a testing session or failed to complete at least 1 of the tests at 1 session). The control group consisted of 10 matched control athletes. Given the different numbers of subjects in the 2 groups, a priori probabilities for group membership were set at 62% for the group with concussions and at 38% for the control group. Based on testing conducted 24 hours after injury, the neuropsychological test battery resulted in an overall 89.5% correct classification rate for the 2 groups (87.5% correct classification for players with concussions; 90% correct classification for the control subjects). Current data provide preliminary support regarding the sensitivity of our test battery in classifying athletes with concussions vs controls. Although the number of subjects in each group is small, comparison of the magnitude of change in performance for each group is presented in FIGURE 2. Performance of the athletes with concussions was noticeably worse (approximately 1 SD) than the control group on Hopkins Total (trials 1-3 of the HVLT) and delayed memory (total delay score on the HVLT) within 24 hours after injury. Moderate differences in performance persisted between groups until at least day 5 postconcussion.

COMMENT

The results of this study suggest that history of concussion and LD are independently related to lower baseline cognitive performance within a large, multiuniversity sample of football players. The negative impact of LD on neurocognitive functioning in a general population is well established. Within our sample, the domains of executive functioning (ie, ability to plan and execute a nonverbal behavior), speed of information processing, speeded word fluency, and memory appear to be attenuated in those athletes with LD. We also found that a history of concussion is significantly and independently associated with long-term deficits in the domains of executive functioning and speed of information processing, as well as an increase in self-reported symptoms. Such defects appear to be present in those individuals who have sustained 2 or more prior concussions. In this study, a history of 1 concussion does not appear to result in the long-term cognitive morbidity associated with 2 or more episodes of concussion.

The study findings also suggest an interaction of prior concussion and LD on select neuropsychological measures. Players with a history of 2 or more concussions and LD performed significantly worse on tests of executive functioning (Trails B) and speed of information processing (SDMT) relative to players with concussions who were not diagnosed with LD, suggesting an additive effect of LD and multiple episodes of concussion on lowered functioning. When compared with accepted normative values, athletes with LD and multiple concussions performed in the brain impairment range on these 2 measures.

Three potential hypotheses may account for these findings. First, athletes with LD who experienced concussion may have had less brain reserve capacity than athletes without LD. The margin of cognitive reserve may be less in athletes with LD and the threshold for manifesting neurobehavioral morbidity may be lower. A second hypothesis is that LD may have made the initial diagnosis of concussion more complex and confusing. For example, an athlete without LD, on initial postinjury assessment, may have revealed discernable and unequivocal cognitive and neurobehavioral impairment when compared with baseline presentation. Conversely, the athletes with LD may have had difficulty performing in the requisite skill areas, both before and after concussion, which were assessed during the acute phase of injury (eg, se-
rial 7s, digits backward, months of year in reverse order). Since cursory examination did not reveal overt impairment relative to baseline presentation, these athletes may have returned to play earlier than athletes without LD. Subsequent MTBI may have occurred prior to full neurological recovery. A third hypothesis is that the athletes with LD may have had difficulty learning the proper techniques for safe play or could have neurobehavioral characteristics (eg, impulsivity and attentional impairment) leading to increased risk of injury.

Our data potentially have strong academic implications. Athletes with LD have difficulty in areas of academic achievement, especially within the context of excessive academic and athletic demands. Our data suggest that experiencing 2 or more prior concussions is associated with an attenuation of cognitive skills, which, when combined with the deficits associated with an LD, leads to even further compromised functioning. It is logical to assume that the cognitive domains selectively affected (ie, executive functioning and speed of information processing) are prerequisites for academic success. Thus, academic achievement may become even more difficult for these athletes. This issue is important given that 20% of our sample experienced multiple concussions.

Our study has several limitations. First, although educational records confirmed a diagnosis of LD, concussion history was obtained via structured clinical interview and thus represents nonverifiable self-reported data. However, concussion history is not typically presented in formal medical records and many concussions go unrecognized by trainers or team medical staff. Thus, a self-reported history is essential when examining concussion history and usually represents the only available source of information. Second, although we attempted to gather information regarding alcohol and drug use within our sample, the data obtained were self-reported and may be subject to underreporting.

Data from in-season concussions, although limited by a small sample size, suggest that comprehensive neuropsychological evaluation may prove valuable in the acute and follow-up evaluation of the athlete with a concussion.

Figure 2. Recovery Pattern of Athletes With Concussion and Controls

Scores represent standard scores with mean (SD) of 100 (15). Standard scores for each group were calculated using preinjury baseline means (SDs) for that group to provide an index of change relative to each group’s baseline performance. A higher score represents better performance. Learning indicates Hopkins Trials 1-3; Memory, Hopkins Delay; Executive, Trail-Making Test B (Trails B); Fluency, Controlled Oral Word Association Test; Motor, Grooved Pegboard Test, Dominant Hand; Processing, Symbol Digit Modalities Test (SDMT); and Symptoms, Concussion Symptom Scale. A higher raw score indicates better performance for SDMT (speed of information processing).
Any symptoms (cognitive deficit or self-reported) should alert the clinician that full neurorecovery has yet to occur and return to play is contraindicated until these symptoms resolve. Furthermore, mental status screening instruments are variable in nature and may assess only cursory cognitive functioning (eg, no speed of processing or comprehensive memory component), thus missing the subtle deficits associated with injury. In this study, verbal learning and memory appeared to be the most sensitive components in discriminating athletes with concussions from control athletes at the within-24-hours testing session. Less striking differences were found across other cognitive domains. However, careful examination of postconcussion data at days 3, 5, and 7 revealed greater improvement in performance by control subjects relative to athletes with concussion. Specifically, athletes with concussions failed to demonstrate the magnitude of “learning effect” manifested by control subjects, especially across the domains of speed of information processing and executive functioning. This failed learning effect has been observed in previous research. These types of subtle cognitive impairments can be detected through formal neuropsychological testing procedures. With the development and implementation of similar neuropsychological programs, this type of objective information may prove useful in helping athletes, their families, and physicians make more informed decisions about returning to play, thus protecting the athlete from potential adverse effects of concussion.

Finally, identification of other factors associated with risk of concussion may be found through the study of genetic markers such as apolipoprotein E polymorphism. This marker has only recently been linked to poor outcome at 6 months following head injury and has been identified as a risk factor for boxer’s dementia. Future studies of sports-related concussion should more systematically investigate the importance of genetic factors in recovery.

Funding/Support: This work was supported in part by grants from the Arthur J. Rooney Foundation, Pittsburgh, Pa; Blue Cross/Blue Shield of Michigan, Detroit; and the University of Florida Golden Opportunity Program, Gainesville.

Acknowledgment: We thank the following individuals for aspects of data collection and/or logistical support for the program: David Petron, MD, and Bill Bean, ATC, University of Utah, Salt Lake City; Kevin Connelly, ATC, and Rob Blanc, ATC, University of Pittsburgh, Pennsylvania; Jeff Monroe, ATC, and Jeff Kov, DO, Michigan State University, East Lansing; Guido Urizar, BS, and Chris Houck, BS, University of Florida, Gainesville.

REFERENCES

20. Lovell M. Evaluation of the professional athlete.

©1999 American Medical Association. All rights reserved.