Clinical Investigation

Cocaine-Induced Cerebral Vasoconstriction Detected in Humans With Magnetic Resonance Angiography

Marc J. Kaufman, PhD; Jonathan M. Levin, MD, MPH; Marjorie H. Ross, MD; Nicholas Lange, ScD; Stephanie L. Rose; Thellea J. Kukes; Jack H. Mendelson, MD; Scott E. Lukas, PhD; Bruce M. Cohen, MD, PhD; Perry F. Renshaw, MD, PhD

Context.—Clinical observations and case reports suggest that there are important cerebrovascular complications of cocaine use, but no studies have documented a direct link.

Objective.—To determine whether low-dose cocaine administration induces cerebral vasoconstriction in healthy cocaine users.

Design.—Randomized controlled trial.

Subjects.—Twenty-four healthy and neurologically normal men (mean age, 29 years) reporting median cocaine use of 8 lifetime exposures (range, 3 to >40).

Intervention.—Double-blind intravenous administration of cocaine (0.4 or 0.2 mg/kg) or placebo, with cerebral magnetic resonance angiography performed at baseline and 20 minutes following infusion.

Main Outcome Measure.—Cocaine-induced angiographic change indicative of vasoconstriction, as independently and concordantly rated by 2 reviewers blind to treatment condition.

Results.—Cocaine-induced cerebral vasoconstriction in a dose-related fashion (P=.03), with angiograms indicative of vasoconstriction found in 5 of 8 and 3 of 9 subjects receiving 0.4- and 0.2-mg/kg cocaine, respectively, compared with 1 of 7 subjects administered placebo. Outcome stratification by frequency of self-reported lifetime cocaine use (3-10 times, 11-40 times, or >40 times) revealed a statistically stronger dose-related effect (P<.001), suggesting that greater lifetime cocaine use was associated with a greater likelihood of vasoconstriction.

Conclusions.—Cocaine administration induced dose-related cerebral vasoconstriction on magnetic resonance angiograms. These changes occurred at low cocaine doses and in the absence of other risk factors, including polydrug abuse, hypertension, or cerebrovascular disease. Outcome stratification by prior cocaine use statistically strengthened the relationship between cocaine administration and vasoconstriction, suggesting that cocaine may have a cumulative residual effect in promoting cerebrovascular dysfunction.

JAMA. 1998;279:376-380

From the Brain Imaging Center (Drs Kaufman, Levin, Ross, Lange, Cohen, and Renshaw and Miss Rose and Kukes) and Alcohol & Drug Abuse Research Center (Drs Kaufman, Levin, Ross, Mendelson, and Lukas), McLean Hospital, Consolidated Department of Psychiatry, Harvard Medical School, Belmont, Mass.

Reprints: Marc J. Kaufman, PhD, Brain Imaging Center, McLean Hospital, 115 Mill St, Belmont, MA 02178 (e-mail: kaufman@mclean.org).

Although the cocaine epidemic of the mid 1980s has waned, the Substance Abuse and Mental Health Administration reported that nearly 2.5 million Americans admitted occasional and 600,000 admitted frequent cocaine use in 1995.1 These statistics indicate that a large number of individuals are exposing themselves to potentially adverse health consequences associated with cocaine use, the best-documented being cardiovascular dysfunction.2-4 Historically, the frequency of major cerebrovascular abnormalities in hospital admissions associated with cocaine abuse has been relatively low (0.35%-3%).5,6 However, this frequency now appears to be on the increase. The case report literature illustrating catastrophic neurologic and cerebrovascular complications in cocaine users7-10 is rapidly growing, and the incidence of cocaine-related strokes has been characterized as reaching epidemic proportions.11 The most likely mechanism for these effects is cocaine-induced cerebral vasoconstriction.9,10,12 Based on the lack of vascular pathology at autopsy, cerebral vasoconstriction or vasoconstriction has also been suggested to occur in cocaine-associated intracranial hemorrhage.13,14

A more subtle form of cerebrovascular dysfunction found approximately 80% of the time in long-term cocaine users15-17 is the development of focal perfusion defects. These focal defects have not been associated with any significant cerebral pathologic abnormality, but have been associated with moderate to severe cognitive dysfunction.16,17 Importantly, such
perfusion defects persist during periods of cocaine abstinence, as do cognitive abnormalities. The clinically silent nature of these abnormalities implies that substantial numbers of cocaine users may be affected with these defects yet remain undiagnosed. The causes of these subtle changes have not been elucidated, although cocaine-induced vasoconstriction or vasospasm has been implicated.

The suggestion that cocaine-induced cerebral vasoconstriction may mediate both catastrophic and subtle clinical sequelae is supported by the observation that cocaine and its metabolites are potent cerebral vasoconstrictors in animal models. However, to our knowledge, no study to date has documented a direct relationship between cocaine administration and human cerebral vasoconstriction. A relationship cannot be ascertained from case report studies, as they include confounders such as concurrent polydrug abuse (eg, the use of cocaine plus other vasoactive substances such as heroin, alcohol, or amphetamine), the presence of vasoactive adulterants in illicit drugs, and potential underlying cerebrovascular disease. Additionally, wide variations in cocaine purity and self-administration procedures preclude establishment of dose-effect relationships between cocaine and cerebral vasoconstriction.

Accordingly, this prospective study was designed to evaluate whether intravenous administration of low doses of pure, pharmaceutical grade cocaine hydrochloride could induce cerebral vasoconstriction in otherwise healthy human subjects. Serial noninvasive imaging of the major cerebral arteries was conducted at baseline and 20 minutes following cocaine administration, using magnetic resonance angiography (MRA), which is highly sensitive to blood flow perturbations and has proven useful for detecting acute cerebral vasospasm. Vasoconstriction results in vessel signal intensity loss at the site of and distal to the constricted region. Magnetic resonance angiography is advantageous in that it is noninvasive and does not use ionizing radiation, facilitating within-subject repeated-measures study designs. We hypothesized that intravenous cocaine administration would promote a dose-related vasoconstriction of major cerebral arteries.

METHODS

Subjects

Subjects with either no history of cocaine use or with a diagnosis of cocaine abuse or dependence (according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria) were excluded from this study. A group of 24 healthy, medically and neurologically normal men aged 20-55 years (mean SD) who reported occasional cocaine use (median 8 range 3 to 40 lifetime exposures primarily via insufflation) was selected for study participation. Subjects provided written informed consent with McLean Hospital Institutional Review Board approval. Subjects underwent a complete physical and neurological examination, including electrocardiogram and blood work, prior to study and provided a medical history including estimates of illicit drug usage (Table 1).

On the study day, subjects provided breath and urine samples to detect recent alcohol or illicit drug use. Breath samples were analyzed with a breathalyzer (Alco Sensor III Breathalyzer, Intoximeters Inc, St Louis, Mo). Urine samples were analyzed for the presence of cocaine, amphetamines, phencyclidine, opiates, barbiturates, benzodiazepines, and tetrahydrocannabinol with a urinary immunoassay system (Triage Test, Biosite Diagnostics, San Diego, Calif). All subjects had negative breath alcohol samples and urine screens. Each subject had an 18G angiocath inserted into a vein overlying the antecubital fossa for cocaine or placebo administration. Subjects were fitted with noninvasive cardiovascular monitoring equipment (In Vivo Research, Inc, Orlando, Fla) including 4-lead electrocardiogram, blood pressure cuff, and pulse oximeter, which provided continuous monitoring of the electrocardiogram, blood pressure, and heart rate.

Magnetic Resonance Scanning

Magnetic resonance imaging was conducted with a clinical magnetic resonance scanner (1.5 Tesla Signa Scanner, Magnetic Resonance Scanning Research, Inc, Orlando, Fla) including 4-lead electrocardiogram, blood pressure cuff, and pulse oximeter, which provided continuous monitoring of the electrocardiogram, blood pressure, and heart rate.

Image Analysis

Each image set was analyzed for the presence or absence of vasoconstriction, when compared with baseline. Two expert raters, blinded with regard to study drug administration, independently analyzed the 24 image sets. Prior to analysis, the 2 raters agreed on criteria that would be used to determine alterations between baseline and postdrug images. These criteria included subtle image differences, such as changes in the caliber of moderate- and large-sized arteries and focal narrowing or complete signal loss in a major arterial structure. Image sets were scored as unchanged, ambiguous, or altered. Concordance was established when both raters agreed in their independent scan ratings. A weighted kappa statistic of 0.64 for interrater agreement showed a very high degree of between-rater concordance ($P = .003$, 2-sided; unweighted $k = 0.70$, $P < .001$).

Table 1—Lifetime Self-reported Illicit Drug Use*	Illicit Drug	Lifetime Exposures
Marijuana & 39 (3) & 17,740
Cocaine & 10 (2) & 233
Hallucinogens & 10 (2) & 34
Amphetamines & 6 (2) & 3
Opiates & 4 (3) & 4
Sedatives & 4 (3) & 6

*Data shown are mean (SE) using average values of reporting ranges (see below) as the numerical index of drug use. The exposure ranges used are deliberately broad (0-4 times, 5-10 times, 11-39 times, and >40 times). This helps to account for factors that preclude accurate determination of absolute drug use, even in cooperative subjects. These include variable purity of street drug, variable route and amount of administration per exposure, the possibility that some subjects will not be truthful in reporting prior drug use, and the possibility that acute and/or chronic memory deficits in some study subjects affect reporting accuracy. Based on these reporting methods, illicit drug use was statistically equivalent across the 3 dosing groups for all substances with the exception of marijuana.

The high cocaine dose group reported 46 (4) and the placebo dose group reported 27 (8) lifetime marijuana exposures ($P = .03$).
Subjective Effects

The subjective effects of drug administration were assessed using a modified visual analog scale. Each subject rated how “good,” “bad,” “high,” and “euphoric” they felt as well as how much they “craved cocaine.” This rating occurred at baseline and at 5 minutes after drug administration. This latter time point corresponds to the approximate time of peak subjective effects of cocaine following intravenous administration.28

RESULTS

Baseline cardiovascular parameters were normal in all subjects, with heart rate averaging 66 (2) beats per minute (mean [SE]), and systolic and diastolic blood pressures averaging 126 (3) and 85 (2) mm Hg, respectively. Slight increases in heart rate and systolic and diastolic pressures were observed in the placebo group (Table 2) and were attributed to expectancy effects. Both cocaine doses elevated heart rate for the duration of the experiment, with peak increases in heart rate, systolic, and diastolic pressures noted in the placebo group (Table 2) occurring approximately 6 to 10 minutes following drug administration. Twenty minutes after cocaine or placebo administration, at the midpoint of the MRA acquisition, heart rate and diastolic pressure remained elevated in all subjects administered cocaine; systolic pressure remained elevated in subjects administered 0.4-mg/kg cocaine (Table 2). The 20-minute cardiovascular values were reduced with respect to peak values (Table 2). An overall dose effect of cocaine (repeated-measures analysis of variance [ANOVA]) was detected for heart rate and diastolic pressure at the 20-minute time point (Table 2).

Image analysis revealed that all baseline images were normal. However, following drug administration, a relationship between the cocaine dosage administered and the incidence of vasoconstriction was found. Raters determined that 5 of 8 subjects who received 0.4 mg/kg cocaine experienced angiographic alterations from baseline images indicative of cerebral vasoconstriction. These ranged from subtle differences in arterial caliber to more significant alterations, including focal narrowing or complete signal loss from a major arterial structure. These alterations were detected in the posterior cerebral artery, the middle cerebral arteries (Figure), vertebral arteries, and the anterior and posterior communicating arteries. It should be noted that the communicating arteries often reflect changes in relative regional volume flow in the anterior, middle, and posterior cerebral arteries, or even in individual branches of these vessels. Thus, alterations in the anterior and posterior communicating arteries may or may not be due to a direct vasoconstrictive effect of cocaine. Three of 9 subjects who received 0.2-mg/kg cocaine had angiographic alterations in several arteries including the anterior communicating arteries and the posterior and middle cerebral arteries. One of 7 subjects who received placebo was ruled to have an altered postplacebo MRA scan. This is attributed to expectancy effects and may be associated with the brief but significant increment in cardiovascular function noted in the placebo group (Table 2). Table 3 shows the observed classification of angiogram results stratified by cocaine dosage for all image sets. Statistical analysis of concordantly rated scans, using a linear-by-linear association model32 for the ordered categories of unchanged, ambiguous, and altered, indicated a significant association of increasing prevalence of altered scans with increasing cocaine dose (P=.03, 1-sided). When discordantly rated scans were included, the significance of the association decreased slightly (P=.06). These findings demonstrate an apparent relationship between cocaine administration and altered MRA scan; moreover, this effect appears to be dose related. A stratified analysis of this small sample by frequency of self-reported lifetime cocaine use (3-10 times, 11-40 times, or >40 times) revealed a statistically stronger dose-response relationship (P<.001), suggesting that prior cocaine use may have a cumulative effect in promoting angiographic changes indicative of vasoconstriction.

The subjective reporting data were analyzed with a repeated-measures ANOVA for the effect of time (eg, postdrug vs predrug ratings). Subjects reported feeling significantly more “high,” “euphoric,” and “good” after drug administration (F1,21=21.3, P<.001) and reported significantly more cocaine “craving” after cocaine drug administration (F1,21=8.2, P=.009). Additionally, a dose-effect relationship between cocaine and “high” ratings was found (F2,21=12.2, P<.001). These data document a rapid effect of cocaine consistent with the intravenous route of administration.

The study design precluded direct measurement of plasma cocaine levels in this experiment. However, we have obtained plasma cocaine levels by gas chromatography/mass spectroscopy analysis29 from comparable subjects administered cocaine by identical protocols. Peak plasma cocaine levels of 230 (10) and 90 (10) ng/mL (mean [SE]) were found 6 to 8 minutes following intravenous administration of 0.4-mg/kg (n=3) and 0.2-mg/kg (n=6) doses of cocaine, respectively. Plasma cocaine levels of 180 (30) and 80 (10) ng/mL were found at 20 minutes after administration, corresponding to the midpoint time of the present MRA acquisition, following 0.4- and 0.2-mg/kg cocaine doses, respectively. These values and their time course closely parallel those published in a recent report of the venous plasma cocaine level time course following intravenous cocaine administration.30

COMMENT

These results are the first to document that intravenous administration of a relatively low dose of cocaine to otherwise healthy humans can induce angiographic changes indicative of cerebral vasoconstriction. This finding suggests that low cocaine doses are sufficient to induce cerebrovascular dysfunction. The data also are suggestive of a dose-effect relationship between cocaine and vasoconstriction. It is

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo (n=7)</th>
<th>0.2-mg/kg Cocaine (n=9)</th>
<th>0.4-mg/kg Cocaine (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, bpm</td>
<td>Baseline</td>
<td>+20 min</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>63 (2)</td>
<td>69 (3)†</td>
<td>64 (2)†</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>Baseline</td>
<td>+20 min</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>129 (8)</td>
<td>142 (7)†</td>
<td>133 (8)†</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>Baseline</td>
<td>+20 min</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>63 (2)</td>
<td>71 (2)§</td>
<td>66 (4)</td>
</tr>
</tbody>
</table>

*Data shown are mean (SE). Repeated-measures analysis of variance (ANOVA), testing for dose effect 20 minutes after drug administration vs baseline values, bpm indicates beats per minute, and BP, blood pressure.
†Significantly different from baseline within dose group (P<.01, paired t test).
‡Significantly different from peak within dose group (P<.05, paired t test).
#Significantly different from placebo dose group baseline (P<.05, paired t test).
¶Significantly different from 0.2-mg/kg dose group baseline (P<.05, unpaired t test).
©1998 American Medical Association. All rights reserved.
Persistent hypoperfusion has been associated with decreased cerebral perfusion. Further, we cannot rule out the possibility that cocaine-induced increases in cardiovascular function may contribute to cerebral vasocostriction. The current findings warrant future MRA studies using within-subject repeated-measures models to confirm the dose-effect relationship between cocaine and cerebral vasocostriction, as well as to evaluate temporal patterns of cocaine- and metabolite-induced cerebral vasocostriction.

Current study used intravenous cocaine administration as the drug delivery method, while intranasal administration and smoking of the alkaloidal form “crack” are the more common forms of administration. The mode of cocaine administration has been suggested to be related to cerebrovascular effect, with the intravenous route leading to hemorrhagic strokes and “crack” smoking leading to both ischemic and hemorrhagic stroke. It is unclear from our data whether a different form of cocaine or a different route of administration would produce a dissimilar rate or severity of vasoconstriction. However, our finding of an apparent dose-effect relationship between cocaine and vasocostriction suggests that once a sufficient plasma cocaine concentration is achieved, cerebral vasocostriction will occur.

A final limitation of this study was the reliance on a qualitative, rather than a quantitative, method of angiogram evaluation. However, the 2 raters achieved a high degree of concordance, indicating a high degree of interrater reliability. We thus conclude that these data are suggestive of a dose-effect relationship between cocaine and cerebral vasocostriction. These results underscore the risks of single doses of cocaine in promoting cerebrovascular abnormalities, particularly in individuals with other risk factors. The data also strongly suggest that there is an increased risk of cerebrovascular dysfunction in individuals who are frequent or long-term cocaine users, and that this dysfunction may be progressive. Together, these findings highlight the potential dangers of cocaine use on cerebrovascular function and document the importance of developing effective prevention strategies as well as treatments that protect against cocaine-induced vascular dysfunction.

This work was supported by National Institute on Drug Abuse grants DA09445 (Dr Renshaw), DA00829 (Dr Kaufman), DA00297 (Dr Levin), DA00459 (Dr Mendelson), DA00604 (Dr Mendelson), and DA00343 (Dr Lukas). The authors gratefully acknowledge the excellent technical assistance of Anne Smith, RTR; Eileen Connolly, RTR; Rebekah Kaufman, MS, and Christina Bonello. We also acknowledge helpful suggestions from the anonymous reviewers.
ogy

orrhage: absence of vasculitis in 14 cases. BJ, Garcia JH. Cocaine-associated intracranial hem-

14.

1291-1296.

12.

7.

1114-1118.

10.

699-704.

16.

15. Volkov ND, Mullani N, Gould KL, Adler S, Kra-

jewski K. Cerebral blood flow in chronic cocaine us-
er: a study with positron emission tomography. Br J Psychi-

16. Holman BL, Carvalho PA, Mendelson JH, et al. Brain perfusion is abnormal in cocaine-dependent polydrug users: a study using technetium-99m-HM-

17. Strickland TL, Mena I, Villanueva-Meyer J, et al. Cerebral perfusion and neuropsychological con-
sequences of chronic cocaine use. J Neuroradiol-

18. Levin JM, Mendelson JH, Holman BL, et al. Im-
proved regional cerebral blood flow in chronic co-

uropsychological deficits in abstinent cocaine abusers: preliminary findings after two weeks of absti-

ence. Drug Alcohol Depend. 1993;32:231-

237.

caine and its metabolites constrict cerebral arteri-

oles in newborn pigs. J Pharmacol Exp Ther. 1990;

265:587-591.

23. He G-Q, Zhang A, Altura B, Altura B. Cocaine-

induced cerebrovasospasm and its possible mecha-

nism of action. J Pharmacol Exp Ther. 1994;268:

1532-1539.

24. Madden JA, Konkol RJ, Keller PA, Alvarez TA. Cocaine and benzoyl/phenylethyl constrict cerebral ar-

teries by different mechanisms. Life Sci. 1995;56:

679-686.

25. Horikoshi T, Fukamachi A, Ishii H, Yagi S-I, Fukasawa I. Observation of vasoaspass after sub-

arachnoid hemorrhage by magnetic resonance an-

giography. Neurol Med Chir (Tokyo). 1995;35:308-

304.

graphic demonstration of reversible cerebral vaso-

spasm in porphyric encephalopathy. AJNR Am J

tion; 1994:222-223.

28. Folitn RW, Fischman MW. Smoked and intra-

venous cocaine in humans: acute tolerance, cardio-

vascular and subjective effects. J Pharmacol Exp

29. Teoh SK, Mendelson JH, Mello NK, et al. Acute interactions of buprenorphine with intravenous co-

caine and morphine: an investigational new drug

30. Evans SM, Cone EJ, Henningfield JE. Arterial and venous cocaine plasma concentrations in hu-

mans: relationship to route of administration, car-

diovascular effects and subjective effects. J Phar-

macol Exp Ther. 1996;279:1345-1356.

31. Fleiss JL, Cohen J. The equivalence of weighted kappa and the intraclass correlation co-

efficient as measures of reliability. Educ Psychol

35. Selden LHS, Morgan MK, Spence I, Weber NC. Chronic cerebral hyperperfusion and impaired neu-

36. Arndt A, Rosselli M, Strumpfner R. Neurop-

144.

40. Wahlgren NG, Hellstrom G, Lindqust C, Rud-

dell A. Sym pathetic nerve stimulation in humans increases middle cerebral artery blood flow veloc-

41. Hellstrom G, Wahlgren NG. Physical exercise increases middle cerebral artery blood flow veloc-