Original Investigation

Maternal Body Mass Index and the Risk of Fetal Death, Stillbirth, and Infant Death
A Systematic Review and Meta-analysis

Dagfinn Aune, MS; Ola Didrik Saugstad, MD, PhD; Tore Henriksen, MD, PhD; Serena Tonstad, MD, PhD

IMPORTANCE
Evidence suggests that maternal obesity increases the risk of fetal death, stillbirth, and infant death; however, the optimal body mass index (BMI) for prevention is not known.

OBJECTIVE
To conduct a systematic review and meta-analysis of cohort studies of maternal BMI and risk of fetal death, stillbirth, and infant death.

DATA SOURCES
The PubMed and Embase databases were searched from inception to January 23, 2014.

STUDY SELECTION
Cohort studies reporting adjusted relative risk (RR) estimates for fetal death, stillbirth, or infant death by at least 3 categories of maternal BMI were included.

DATA EXTRACTION
Data were extracted by 1 reviewer and checked by the remaining reviewers for accuracy. Summary RRs were estimated using a random-effects model.

MAIN OUTCOMES AND MEASURES
Fetal death, stillbirth, and neonatal, perinatal, and infant death.

RESULTS
Thirty eight studies (44 publications) with more than 10,147 fetal deaths, more than 16,274 stillbirths, more than 43,111 perinatal deaths, 11,294 neonatal deaths, and 4,983 infant deaths were included. The summary RR per 5-unit increase in maternal BMI for fetal death was 1.21 (95% CI, 1.09-1.35; I² = 77.6%; n = 7 studies); for stillbirth, 1.24 (95% CI, 1.18-1.30; I² = 80%; n = 18 studies); for perinatal death, 1.16 (95% CI, 1.00-1.35; I² = 93.7%; n = 11 studies); for neonatal death, 1.18 (95% CI, 1.09-1.28; I² = 79%; n = 4 studies). The test for nonlinearity was significant in all analyses but was most pronounced for fetal death. For women with a BMI of 20 (reference standard for all outcomes), 25, and 30, absolute risks per 10,000 pregnancies for fetal death were 76, 82 (95% CI, 76-88), and 102 (95% CI, 93-112); for stillbirth, 40, 48 (95% CI, 46-51), and 59 (95% CI, 55-63); for perinatal death, 66, 73 (95% CI, 67-81), and 86 (95% CI, 76-98); for neonatal death, 20, 21 (95% CI, 19-23), and 24 (95% CI, 22-27); and for infant death, 33, 37 (95% CI, 34-39), and 43 (95% CI, 40-47), respectively.

CONCLUSIONS AND RELEVANCE
Even modest increases in maternal BMI were associated with increased risk of fetal death, stillbirth, and neonatal, perinatal, and infant death. Weight management guidelines for women who plan pregnancies should take these findings into consideration to reduce the burden of fetal death, stillbirth, and infant death.

Author Affiliations: Author affiliations are listed at the end of this article.

Corresponding Author: Dagfinn Aune, MS, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, Norfolk Place, Paddington, London W2 1PG, United Kingdom (d.aune@imperial.ac.uk).

Copyright 2014 American Medical Association. All rights reserved.
Maternal BMI, Stillbirth, Fetal and Infant Death

Summary RRs for the association between maternal BMI and risk of fetal death, stillbirth, and infant death, we conducted a systematic review and meta-analysis of the available evidence from published cohort studies. This study specifically determined the strength of the association, the shape of the dose-response relationship, potential confounding, and potential sources of heterogeneity in the results (including the definition of stillbirth and perinatal death).4

Methods

Search Strategy and Inclusion Criteria
PubMed and Embase databases were searched from inception (1966 and 1947, respectively) to January 23, 2014. Details of the search strategy are reported online (eTable 1, eTable 2 in Supplement).

Study Selection
Cohort studies that reported on maternal BMI before or in early pregnancy and risk of fetal death, stillbirth, and neonatal, perinatal and infant death were included. Publications that provided adjusted relative risk (RR) estimates such as risk ratios, incidence rate ratios, hazard ratios or odds ratios and 95% CIs (CIs) for 3 or more categories of BMI were eligible. Thirty-eight studies (44 publications) were included.4-47

Data Extraction
The following data were extracted from each study: first author’s surname, publication year, country or region of the study origin, number of participants or pregnancies, number of deaths, the exposure variable (BMI) by subgroup (when reported), cutoff values for BMI categories, RRs (95% CIs), and adjustment for potentially confounding factors.

Statistical Methods
Summary RRs for the association between maternal BMI and fetal and infant death were calculated using the random-effects model by DerSimonian and Laird.48 The weighted mean of the natural logarithm of the RRs was estimated and the RRs were weighted by the method of DerSimonian and Laird.48 A 2-sided P value of less than .05 was considered statistically significant. For studies that reported results separately by race,7,4 parity,39 or diabetes status,9 the risk estimates were pooled using a fixed-effects model before including the study in the overall analysis. Results were similarly pooled for pregnancy weeks 13 and earlier and weeks 14 through 19,4 and for miscarriage and stillbirth29 to generate a result for miscarriage and fetal death, respectively. For one study, which provided 99% CIs for the risk estimates, the CIs were recalculated to correspond with 95% CIs.20 To investigate whether specific levels of BMI were associated with fetal or infant death, the method described by Greenland and Longnecker49 was used to conduct dose-response analyses by computing study-specific slopes (linear trends) and 95% CIs from the natural log of the RRs and CIs across categories of BMI. The method of Hamling et al50 was used to convert risk estimates when the reference category used in the analyses was not the lowest category. To assess the influence of these conversions on the results, sensitivity analyses were conducted by simply excluding the reference category instead of converting the risk estimates. For each BMI category, the average of the upper and lower bound was used as a midpoint and the respective RRs were assigned to each midpoint. When extreme categories were open ended,

Box. Outcomes Definitions

Fetal death
Spontaneous death of a fetus during pregnancy or labor

Miscarriage
Death of a fetus or embryo before week 20 (definition varies as some studies include death up to 24 weeks of gestation)

Stillbirth
Death of a fetus at week 20 to 28 or more completed weeks of gestation (definition varies between studies and different cut-off points have been used)

Antepartum stillbirth
Stillbirth in which there was no evidence of life during labor

Intrapartum stillbirth
Stillbirth in which the fetus died during labor

Neonatal death
Death following live birth of an infant but before age 28 days

Early neonatal death
Neonatal death before age 7 days

Perinatal death
Stillbirth and early neonatal death (neonatal death is included in some studies)

Postneonatal death
Death of an infant older than 28 days old but younger than 1 year

Infant death
Death of a live-born infant before age 1 year
a lower BMI value of 15 was used for the lowest category (BMI <18.5 or BMI <20), but 18.5 was used as the lower cutoff when it indicated a normal weight category (BMI <25). For the highest category, the size of the adjacent interval was used to calculate an upper cutoff value, which in most cases was in increments of 5 BMI units (20–<35, 35–<40, 40–<45). A potential nonlinear dose-response relationship between BMI and fetal and infant death was assessed on a multiplicative scale using fractional polynomial models53 and the best fitting second-order fractional polynomial regression model was determined—defined as the one with the lowest deviance. A likelihood ratio test was used to assess the difference between the nonlinear and linear models to test for nonlinearity.54 Absolute risks were calculated by applying the adjusted RR estimates from the nonlinear dose-response analysis to the pooled unadjusted absolute risk in the reference category across studies. Publication bias was assessed using the Egger test.57 Sensitivity analyses were conducted by omitting 1 study at a time from the analyses and assessing its effect on the overall findings. Subgroup and metaregression analyses were conducted by study characteristics, such as geographic location, number of deaths, adjustment for confounding factors, study quality (which was assessed using a modified Newcastle-Ottawa scale53; see eBox 1 in Supplement), and by the outcome definition (Box) to investigate sources of heterogeneity. The statistical analyses were conducted using Stata statistical software version 10.1 (StataCorp LP).

Results

After ineligible studies were excluded (eTable 3 in Supplement), 38 studies (44 publications)4-47 were included in the dose-response analysis of BMI and fetal death, stillbirth, neonatal death, perinatal death, or infant death or subtypes of these outcomes (eTables 4-8 in Supplement, Figure 1). Six of the studies were from North America, 19 from Europe, 2 from Latin America, 6 from Australia, 4 from Asia, and 1 from Africa.

Fetal Death

Seven cohort studies4-6,15-17,29 investigated the association between maternal BMI and fetal death and included more than 10 147 deaths among 690 622 participants (eTable 4 in Supplement). In the dose-response analysis, the summary RR per 5 BMI units was 1.21 (95% CI, 1.09-1.35; \(P = .43\)). There was evidence for a nonlinear association (\(P < .001\) for nonlinearity) with a steeper curve at the higher levels of BMI (Figure 2b, Table). For BMI levels of 20, 25, and 30, absolute risks per 10 000 pregnancies were 76 (reference standard), 82 (95% CI, 76-88), and 102 (95% CI, 93-112), respectively (Table). Five studies6,15,16,19,29 were included in the analysis of maternal BMI and miscarriages and the summary RR per 5 BMI units was 1.16 (95% CI, 1.07-1.26; \(P = .33\%\); \(P = .20\) for heterogeneity; eFigure 1 in Supplement).

Stillbirth

Eighteen cohort studies* were included in the analysis of maternal BMI and stillbirth risk and included more than 16 274 stillbirths among 3 288 688 participants (eTable 5 in Supplement). The summary RR per 5 BMI units was 1.24 (95% CI, 1.18-1.30; \(P = .80\%\); \(P < .001\) for heterogeneity; Figure 3a). There was evidence of publication bias using the Egger test (\(P = .02\); eFigure 2 in Supplement). When excluding the largest study,23 the Egger test was no longer significant (\(P = .34\)). Although the test for nonlinearity was significant (\(P < .001\) for nonlinearity), the curve appeared to be almost linear (Figure 3b, Table). For BMI levels of 20, 25, and 30, absolute risks per 10 000 pregnancies were 40 (reference standard), 48 (95% CI, 46-51), and 59 (95% CI, 55-63), respectively (Table). Analyzing studies that reported results for antepartum6,22,46,45,49 and intrapartum6,44 stillbirths gave summary RRs of 1.28 (95% CI, 1.15-1.43; *References 4, 6-8, 11-13, 20, 21, 23, 25, 27-32, 47)
Figure 2. Association Between Maternal BMI and Risk of Fetal Death

A Risk of fetal death per 5 maternal BMI units

<table>
<thead>
<tr>
<th>Source</th>
<th>Fetal Death</th>
<th>Participants</th>
<th>Maternal BMI Comparison</th>
<th>Relative Risk per 5 BMI Units (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi et al, 2011</td>
<td>11</td>
<td>2413</td>
<td>≥25 vs <18.5</td>
<td>1.06 (1.01-1.11)</td>
</tr>
<tr>
<td>Joshi et al, 2011</td>
<td>8</td>
<td>1200</td>
<td>≥30 vs ≥20-24.9</td>
<td>1.58 (0.58-4.30)</td>
</tr>
<tr>
<td>Syngelaki et al, 2011</td>
<td>NA</td>
<td>41577</td>
<td>≥35 vs <25</td>
<td>1.20 (1.12-1.30)</td>
</tr>
<tr>
<td>Tennant et al, 2011</td>
<td>196</td>
<td>29856</td>
<td>≥30 vs <18.5</td>
<td>1.36 (1.21-1.52)</td>
</tr>
<tr>
<td>Raatikainen et al, 2006</td>
<td>91</td>
<td>25601</td>
<td>≥30 vs ≥25</td>
<td>1.39 (1.11-1.73)</td>
</tr>
<tr>
<td>Nohr et al, 2005</td>
<td>674</td>
<td>54133</td>
<td>≥30 vs <18.5</td>
<td>1.22 (1.09-1.36)</td>
</tr>
<tr>
<td>Conde-Agudelo et al, 2000</td>
<td>9167</td>
<td>535842</td>
<td>>29 vs <19.8</td>
<td>1.06 (1.01-1.11)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td>1.21 (1.09-1.35)</td>
</tr>
</tbody>
</table>

P = 83.7%; P < .001 for heterogeneity; eFigure 3 in Supplement) and 0.90 (95% CI, 0.76-1.06; F = 0%; P = .99 for heterogeneity; eFigure 4 in Supplement) per 5 BMI units, respectively.

Perinatal Death

Eleven cohort studies5,6,8,9,14-133-38 were included in the analysis of maternal BMI and perinatal death and included more than 4311 deaths among 982 236 participants (eTable 6 in Supplement). The summary RR per 5 BMI units was 1.16 (95% CI, 1.00-1.35; F = 93.7%; P < .001 for heterogeneity; Figure 4a). Excluding 1 study33 that appeared to be an outlier gave a summary RR of 1.25 (95% CI, 1.14-1.36) and reduced the heterogeneity (F = 79.1%). There was no evidence of publication bias using the Egger test (P = .15). There was evidence of a nonlinear association between maternal BMI and perinatal death (P < .001 for nonlinearity) with a flattening of the curve at lower BMI levels (Figure 5a). For BMI values of 20, 25, and 30, absolute risk was 20 (reference standard), 21 (95% CI, 19-23), and 24 (95% CI, 22-27) neonatal deaths per 1 000 pregnancies, respectively (Table). Analyzing 2 studies6,22 of early neonatal death gave a summary RR of 1.31 (95% CI, 1.22-1.41; F = 0%; P = .84 for heterogeneity; eFigure 5 in Supplement) per 5 BMI units and analyzing 2 studies6,40 on postneonatal death gave a summary RR of 1.14 (95% CI, 1.06-1.22; F = 0%; P = .94 for heterogeneity; eFigure 6 in Supplement) per 5 BMI units.

Neonatal and Postneonatal Death

Twelve cohort studies6-8,10,12,30,39-42,47 were included in the analysis of maternal BMI and neonatal death and included 11 294 deaths among 3 321 555 participants (eTable 7 in Supplement). The summary RR per 5 BMI units was 1.15 (95% CI, 1.07-1.23; F = 78.5%; P < .001 for heterogeneity; Figure 5a). There was no evidence of publication bias with the Egger test (P = .18). There was evidence for a nonlinear association (P = .01 for nonlinearity), with a flattening of the curve at the lower BMI levels (Figure 5b, Table). For BMI values of 20, 25, and 30, absolute risk was 20 (reference standard), 21 (95% CI, 19-23), and 24 (95% CI, 22-27) neonatal deaths per 1 000 pregnancies, respectively (Table). Analyzing 2 studies6,10 of early neonatal death gave a summary RR of 1.31 (95% CI, 1.22-1.41; F = 0%; P = .84 for heterogeneity; eFigure 5 in Supplement) per 5 BMI units and analyzing 2 studies6,40 on postneonatal death gave a summary RR of 1.14 (95% CI, 1.06-1.22; F = 0%; P = .94 for heterogeneity; eFigure 6 in Supplement) per 5 BMI units.

Infant Death

Four cohort studies6,10,43,44 were included in the analysis of maternal BMI and infant death and included 4983 deaths among 1 491 879 participants (eTable 8 in Supplement). The summary RR per 5 BMI units was 1.18 (95% CI, 1.09-1.28; F = 79.0%; P < .001 for heterogeneity; Figure 6a). There was no evidence of publication bias using the Egger test (P = .56). There was evidence of a nonlinear association (P < .001 for nonlinearity) with a flattening of the curve at lower BMI levels (Figure 6b, Table). For BMI values of 20, 25, and 30, absolute risk was 33 (reference standard), 37 (95%
Abbreviations: AR, absolute risk; BMI, body mass index; RR, relative risk.

fined stillbirth by different gestational timeframes: stillbirth de-

Table. Relative Risks From Nonlinear Dose-Response Analysis for Maternal BMI and Fetal Death, Stillbirth, and Neonatal, Perinatal, and Infant Death

<table>
<thead>
<tr>
<th>BMI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Fetal Death (n = 6)*</td>
</tr>
<tr>
<td>RR (95% CI)</td>
</tr>
<tr>
<td>AR (95% CI)</td>
</tr>
</tbody>
</table>

Stillbirth (n = 18)

| RR (95% CI) | 0.92 (0.86-0.99) | 1.00 (1.01-1.13) | 1.20 (1.14-1.26) | 1.46 (1.37-1.55) | 1.61 (1.51-1.71) | 1.78 (1.67-1.91) | 1.97 (1.84-2.12) | 2.19 (2.03-2.36) |
| AR (95% CI) | 37 (34-40) | 40 (36-51) | 48 (41-58) | 53 (46-63) | 59 (52-69) | 65 (57-77) | 72 (64-88) | 80 (72-95) |

Perinatal Death (n = 11)

| RR (95% CI) | 0.99 (0.89-1.11) | 1.04 (0.98-1.10) | 1.12 (1.01-1.22) | 1.20 (1.07-1.34) | 1.31 (1.15-1.48) | 1.43 (1.25-1.65) | 1.59 (1.37-1.84) | 1.76 (1.50-2.08) | 1.97 (1.63-2.36) |
| AR (95% CI) | 65 (58-73) | 68 (65-73) | 73 (67-81) | 79 (71-88) | 86 (76-98) | 94 (83-109) | 105 (90-121) | 116 (99-137) | 130 (108-156) |

Neonatal Death (n = 9)*

| RR (95% CI) | 1.04 (0.94-1.16) | 1.01 (0.96-1.06) | 1.05 (0.97-1.14) | 1.12 (1.01-1.23) | 1.20 (1.08-1.33) | 1.30 (1.16-1.45) | 1.42 (1.27-1.59) | 1.55 (1.38-1.74) | 1.71 (1.51-1.94) |
| AR (95% CI) | 21 (19-23) | 20 (19-21) | 21 (19-23) | 22 (20-25) | 24 (22-27) | 26 (23-29) | 29 (25-32) | 31 (28-35) | 34 (30-39) |

Infant Death (n = 4)

| RR (95% CI) | 1.01 (0.93-1.09) | 1.03 (1.00-1.08) | 1.10 (1.03-1.18) | 1.19 (1.10-1.29) | 1.30 (1.19-1.42) | 1.43 (1.30-1.57) | 1.58 (1.43-1.74) | 1.75 (1.58-1.95) | 1.95 (1.73-2.19) |
| AR (95% CI) | 34 (31-36) | 33 (30-36) | 37 (34-39) | 40 (37-43) | 43 (40-47) | 48 (43-52) | 53 (48-58) | 58 (53-65) | 65 (58-73) |

Abbreviations: AR, absolute risk; BMI, body mass index; RR, relative risk.

* BMI is calculated as weight in kilograms divided by height in meters squared.

* Data are reported per 10 000 pregnancies.

* Two studies were excluded (16,40) because the model did not converge when included; and 1 study was excluded (17) because it provided only a continuous estimate.

CI: 34-39), and 43 (95% CI: 40-47) infant deaths per 10 000 pregnancies, respectively (Table).

Subgroup Analyses and Sensitivity Analyses

In subgroup analyses stratified by geographic location, assessment of weight and height, number of deaths, and adjustment for confounding factors, little evidence was found of heterogeneity between subgroups (eTable 9, eTable 10 in Supplement). A stronger association was found among European studies than in one study from Latin America for fetal death (P = .03 for heterogeneity) and in European compared to North American studies for perinatal death (P = .005 for heterogeneity) (eTable 9 in Supplement), while in studies of stillbirth, the association was stronger in studies that adjusted for height (P = .006 for heterogeneity), alcohol (P = .04 for heterogeneity), or coffee/caffeine (P = .04 for heterogeneity) than in studies without these adjustments (eTable 9 in Supplement). In general, the quality of the studies was high and there was little evidence that the results varied by study quality (eTable 9, eTable 10 in Supplement). Because the definitions of stillbirth and perinatal death varied between studies (and possibly regions), additional subgroup analyses were conducted in the studies that provided the definition of stillbirth and perinatal death. The outcome definitions used in the studies are reported online (eTables 11-15 in Supplement). The summary RR per 5 BMI units was compared between studies that defined stillbirth by different gestational timeframes: stillbirth de-

...
Discussion

In this meta-analysis of cohort studies, moderate to strong increases in the RR of fetal death, stillbirth, neonatal death, perinatal death and infant death were found with increasing maternal BMI. In linear dose-response analyses, the RR per 5-unit increase in maternal BMI ranged from 1.15 to 1.24. Although the test for nonlinearity was significant in all analyses, the nonlinearity was most pronounced for fetal death and the curve showed a steeper increase at higher levels of BMI; whereas for stillbirth, the association appeared to be almost linear. In the remaining analyses, the associations appeared to be broadly linear above a certain threshold, which differed slightly between the different outcomes (approximately 24-25 for perinatal and infant death and approximately 26-27 for neonatal death). However, the greatest risk was observed in the category of severely obese women; women with a BMI of 40 had an approximate 2- to 3-fold increase in the RR of these outcomes vs those with a BMI of 20, with absolute risks in the range of 0.69% to 2.7% for BMI of 40 vs 0.20% to 0.76% for BMI of 20. The differences in the shape of the curves and strength of the associations might partly be because different studies were included in the different analyses, but they could also reflect differences in the etiology between the types of outcomes. Our findings are consistent with 2 previous meta-analyses of maternal overweight and obesity and risk of stillbirth, but included a larger number of studies, more detailed dose-response, sensitivity and subgroup analyses, assessment of study quality, and analyses of absolute risks. To our knowledge, this is the first meta-analysis to comprehensively summarize results for the relationship between maternal BMI and fetal, perinatal, neonatal, and infant death as well. In addition, subtypes of outcomes including miscarriage, antepartum and intrapartum stillbirth, early neonatal death, and postneonatal death were analyzed in this study. The null association
for intrapartum stillbirth might be because the medical care received during childbirth is sufficient to alleviate any obesity-related complications that could result in stillbirth, while the remaining associations were consistent with the overall findings of increased risk with greater maternal adiposity. Our findings are further supported by 2 studies of interpregnancy weight change that reported increased risk of stillbirth in the second pregnancy among women who gained weight between the first and the second pregnancy.56,57

This meta-analysis has some limitations. It is possible that confounding by other risk factors could partially explain the associations observed. Most of the studies adjusted for established confounding factors such as maternal age, parity, and smoking, and the results persisted in subgroup analyses with such adjustments. There was some evidence of publication bias in the analysis of stillbirth. This appeared to be explained by a very large US study23 that contributed more than 51% of the total number of stillbirths and which found a weaker association than the overall summary estimate. When this study was excluded, there was no evidence of publication bias. Heterogeneity was rather high in all analyses, but this appeared to be related to differences in the size of the effect estimates between studies rather than a lack of association. It is possible that different definitions of stillbirth could have contributed to the lower summary estimates in studies from North and Latin America compared with European ones. Some of the studies from North and Latin America defined stillbirth as a fetal death of at least 20 or 22 completed weeks of gestation, while the European studies tended to use completion of more than 22, 24, or 28 weeks as the cutoff points. It has been shown that maternal BMI is more strongly associated with fetal death in later pregnancy vs early.4 When studies were grouped according to the definition of stillbirth and perinatal death, there was some suggestion of a stronger association among the studies of stillbirth that used week 28 as the cutoff point than among studies using earlier cutoff points, and among studies of perinatal death that only included early neonatal death compared with all neonatal deaths in addition to stillbirth. This is consistent with the weaker association that was observed for neonatal death compared with early neonatal death and stillbirth.

Most of the studies included in this meta-analysis were from Europe and North America where fetal and infant death rates are much lower than in low- and medium-income countries. Thus, it is unclear whether the results can be generalized to other settings. One African study28 and 2 studies from

![Figure 4. Association Between Maternal BMI and Risk of Perinatal Death](image-url)
Asia11,13 regarding stillbirth were consistent with the findings from European and North and South American studies. In addition, 1 small study from Ghana that could not be included in the dose-response analysis of stillbirth58 and a large cross-sectional study of neonatal death in 27 countries in sub-Saharan Africa reported an increased risk with overweight and obesity.59 Thus, although data are too limited to draw firm conclusions, and further prospective cohort studies are needed from these locations, the present evidence does not suggest that there are major differences in the direction of these associations based on geography for most of the outcomes investigated.

The positive dose-response relationship between increasing maternal BMI and risk of fetal and infant death suggests an underlying biological relationship between maternal adiposity and fetal and infant death. Several biological mechanisms could explain these associations. Overweight and obesity has been associated with increased risk of preeclampsia,60 gestational diabetes,61 type 2 diabetes,62 gestational hypertension,63 and congenital anomalies.64 All of these conditions, but in particular congenital anomalies, have been strongly associated with risk of fetal and infant death.6 However, we found the risk estimates were similar in studies that adjusted for some of these possibly intermediate end points compared with studies in which no such adjustment had been made, and the positive associations persisted also when the analyses were restricted to 2 studies4,6 in which cases of preeclampsia and pregestational diabetes had been excluded from the analyses. It has been estimated that congenital anomalies only represent 5% of stillbirths;1 thus other mechanisms may also be involved. It has been suggested that thinner women may be better at recognizing decreased fetal movements, which may precede fetal deaths.65 In addition, obese women, even without clinical disease, have increased inflammatory responses, vascular and endothelial dysfunction, and altered lipid metabolism,66 alterations similar to those observed in preeclamptic women.67 Hyperlipidemia may cause a reduction in prostacyclin secretion and increased tromboxane production, which can increase the risk of placental thrombosis, decrease placental perfusion,68 and further lead to both infarction and abruption of the placenta in later pregnancy.69,70 A recent study reported obstetric conditions (29.3%) and placental abnormalities (23.6%) as the most common causes of stillbirth,71 and one study reported a 5-fold increase in risk of stillbirth caused...
by placental dysfunction among obese women, but few studies have had statistical power, sufficient information, or a combination of both to analyze these associations by causes of death. Thus further studies are needed to investigate the mechanisms involved. Maternal obesity has been associated with increased risk of preterm birth, which accounts for approximately 29% of all neonatal deaths worldwide, and of respiratory distress syndrome, which is an important cause of death in preterm infants. In addition, maternal adiposity is associated with increased risk of macrosomia, which in turn is associated with increased risk of neonatal and infant death and deaths due to asphyxia and infections.

Strengths of our meta-analysis include the detailed dose-response analyses, subgroup and sensitivity analyses, assessment of study quality, and the large sample size. The associations appeared to be independent of important confounding factors and most of the associations were robust to the influence of single studies. Because this analysis only included cohort studies, recall bias is not likely to have affected the results and there is also less potential for selection bias. The large sample size in this meta-analysis provided sufficient statistical power to detect significant associations. More studies are needed in low- and medium-income countries, and future studies should use more consistent definitions of outcomes and report definitions in the publications to increase comparability between studies. When possible, reporting on several different outcomes could also clarify differences in the risk associated with overweight and obesity for the different outcomes. In addition, further studies are needed to clarify the association between gestational weight gain and fetal and infant death.

Conclusions

Even modest increases in maternal BMI were associated with increased risk of fetal death, stillbirth, neonatal death, perinatal death, and infant death. Weight management guidelines for women who plan pregnancies should take these findings into consideration to reduce the burden of fetal deaths, stillbirths, and infant deaths.
Maternal BMI, Stillbirth, Fetal and Infant Death

Maternal BMI, Stillbirth, Fetal and Infant Death

S. 3.6 Million neonatal deaths—what is progressing

REFERENCES

Additional Contributions: We thank Peter W. Tennant, MSc, Institute of Health and Society, Newcastle University, United Kingdom; Sae Kyung Choi, PhD, Department of Obstetrics and Gynecology, Seoul St Mary’s Hospital and The Catholic University of Korea; H. David McIntyre, MD, Mater Medical Research Institute and University of Queensland, Australia; Abdel-Hady El-Galany, MD, Faculty of Medicine, Mansoura University, Egypt; Hasab Narchi, MD, Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University; and Bjærne K. Jacobsen, PhD, Department of Community Medicine, University of Tromsø, Norway, for providing supplementary information or answering our queries regarding their studies. We thank Darren C. Greenwood, PhD, Biostatistics Unit, Centre for Epidemiology and Biostatistics, University of Leeds, for statistical advice and for providing the Stata code for the nonlinear dose-response analyses. We thank Tim Reeves, MSc, Central Library, Imperial College London, for help with the Embase search. No financial compensation was provided to any of these individuals.

Additional references:

