ASSOCIATION OF PLASMA LEPTIN LEVELS WITH INCIDENT ALZHEIMER DISEASE AND MRI MEASURES OF BRAIN AGING

Wolfgang Lieb, MD
Alexa S. Beiser, PhD
Ramachandran S. Vasan, MD
Zaldy S. Tan, MD
Rhoda Au, PhD
Tamara B. Harris, MD
Ronenn Roubenoff, MD, MHS
Sanford Auerbach, MD
Charles DeCarli, MD
Philip A. Wolf, MD
Sudha Seshadri, MD

Context The adipokine leptin facilitates long-term potentiation and synaptic plasticity in the hippocampus, promotes β-amyloid clearance, and improves memory function in animal models of aging and Alzheimer disease (AD).

Objective To relate baseline circulating leptin concentrations in a community-based sample of individuals without dementia to incident dementia and AD during follow-up and magnetic resonance imaging (MRI) measures of brain aging in survivors.

Design, Setting, and Participants Prospective study of plasma leptin concentrations measured in 785 persons without dementia (mean [SD] age, 79 [5] years; 62% female), who were in the Framingham original cohort at the 22nd examination cycle (1990-1994). A subsample of 198 dementia-free survivors underwent volumetric brain MRI between 1999 and 2005, approximately 7.7 years after leptin was assayed. Two measures of brain aging, total cerebral brain volume and temporal horn volume (which is inversely related to hippocampal volume) were assessed.

Main Outcome Measure Incidence of dementia and AD during follow-up until December 31, 2007.

Results During a median follow-up of 8.3 years (range, 0-15.5 years), 111 participants developed incident dementia; 89 had AD. Higher leptin levels were associated with a lower risk of incident dementia and AD in multivariable models (hazard ratio per 1-SD increment in log leptin was 0.68 [95% confidence interval, 0.54-0.87] for all-cause dementia and 0.60 [95% confidence interval, 0.46-0.79] for AD). This corresponds to an absolute AD risk over a 12-year follow-up of 25% for persons in the lowest quartile (first quartile) vs 6% for persons in the fourth quartile of sex-specific leptin levels. In addition, a 1-SD elevation in plasma leptin level was associated with higher total cerebral brain volume and lower temporal horn volume, although the association of leptin level with temporal horn volume did not reach statistical significance.

Conclusion Circulating leptin was associated with a reduced incidence of dementia and AD and with cerebral brain volume in asymptomatic older adults.

JAMA. 2009;302(23):2565-2572

©2009 American Medical Association. All rights reserved.
the CA1 region of the hippocampus, an area integral to learning and memory. Because midlife obesity is associated with an increased risk of AD, late-life weight loss is known to precede the onset of clinical AD. Because leptin promotes weight loss, elevated leptin levels might be expected in the early stages of AD. Surprisingly, however, in a recent small case-control study, leptin levels were observed to be low in persons with vascular dementia, again suggesting that higher leptin concentrations may reduce the risk of AD. However, this cross-sectional study could not clarify whether the lower leptin levels preceded the development of clinical AD and no prospective studies have examined this association.

In the prospective Framingham study, participants have been evaluated with anthropometric and laboratory measures for decades, followed up for incident dementia and AD, and examined with volumetric brain magnetic resonance imaging (MRI) while they were free of dementia. We related baseline plasma leptin concentrations prospectively to incident dementia and AD, and, in survivors, to a single measurement of total cerebral brain volume (TCBV) and temporal horn volume (THV; which is a surrogate measure inversely related to hippocampal volume), both of which are recognized markers of early AD pathology and subsequent dementia risk.

METHODS

Study Sample
Details of the recruitment and phenotyping of the Framingham Study original cohort have been described in detail elsewhere. The study was initiated in 1948 to identify risk factors for heart disease in the community. A total of 5209 participants were included and are seen in the Heart Study research clinic approximately every 2 years, in which a detailed medical history is obtained and all traditional cardiovascular risk factors are measured. Of 1060 dementia-free persons who attended the twenty-second examination cycle and were subsequently followed up for incident dementia until December 31, 2007, leptin levels were measured in 785 participants. In this study sample, participants who did not have leptin levels measured were significantly older than those with leptin measured. However, after adjustment for age, participants without and with leptin levels did not differ with respect to their baseline clinical or biochemical characteristics (data appear in eTable 1, which is available at http://www.jama.com).

A subset of 198 individuals (33% of individuals surviving until 1999) underwent volumetric brain MRI between 1999 and 2005. The 406 individuals who survived until 1999 but did not undergo brain MRI either declined consent, had a contraindication to brain MRI (such as claustrophobia or a cardiac pacemaker), did not attend an on-site study examination between 1999 and 2005, or died before the MRI could be obtained. However, their clinical and biochemical characteristics did not differ substantially from those with available MRI (eTable 2). In addition, 16 persons were excluded from the analyses because they developed clinical stroke (n=11), dementia (n=4), or both (n=1) prior to the date of MRI and 4 persons were excluded with neurological conditions (such as a brain tumor) that would affect the assessment of brain MRI measures. At the 22nd examination cycle, the Center for Epidemiologic Studies for Depression scale was administered, which is an established tool to screen for depressive symptoms in community-based samples. The study protocol was approved by the institutional review board of the Boston University Medical Center and all participants provided written informed consent.

Leptin Assay
A commercial radioimmunoassay (Linco Research Inc, St Louis, Missouri) was used to determine leptin concentrations at the 22nd examination cycle (1990-1994) from nonfasting plasma samples. The interassay coefficient of variation ranged from 3.0% to 6.2%. The lower sensitivity limit of the assay was 0.5 ng/mL.

Brain Imaging
The imaging parameters, measurement protocols, and reproducibility of these measures have been described. The MRIs were obtained with a Siemens Magnetom 1-T field strength machine using a double spin-echo coronal imaging sequence of 4-mm contiguous slices from nasion to occiput. Imaging analyses were performed at a central location using a custom-designed image-analysis package QUANTA 6.2, operating on a Sun Microsystems (Santa Clara, California) Ultra 5 workstation. Brain images were evaluated by experienced clinicians who were blinded to the participants’ demographic, anthropometric, and clinical data, including leptin concentrations. Lobar and ventricular volumes were computed by rotating the images into anatomical standard space and subsequent operator-defined outlining of the individual lobes using standard anatomical landmarks. Because the hippocampus comprises the medial wall of the temporal horn, shrinkage of the hippocampus results in enlargement of the temporal horn. Intrarater and interrater correlations using this method were high. Manual outlining of the intracranial vault and subsequent mathematical modeling was used to determine total brain parenchymal volume above the tentorium. The TCBV was calculated as the ratio of total brain parenchymal volume to total intracranial volume, thus adjusting for head size. The THV also was converted to a ratio over total intracranial volume and log-transformed to normalize the distribution. The THV of the lateral ventricles served as a surrogate marker inversely related to hippocampal volume.
related to hippocampal volume.11,21

We used this surrogate marker because direct measures of hippocampal volume were not available in all participants.

Clinical Definition of Dementia and AD

All participants in the Framingham study are under periodic surveillance for impairment in cognitive function and dementia. The screening and surveillance methods for the detection of incident dementia in the Framingham original cohort have been outlined.22,23 Briefly, surviving cohort members who were deemed to be free of incident dementia based on a standardized neuropsychological test were followed up with a biennial history, physical examination, and administration of the Folstein Mini-Mental State Examination. Participants who were suspected to have possible cognitive decline based on the Mini-Mental State Examination score; self, physician, or family referral; telephone health status update; or records linkage underwent an in-depth evaluation that included neurological and neuropsychological evaluations.

We determined whether each person fulfilled criteria for a diagnosis of dementia. The probable date of onset and type of dementia was determined at a consensus review by a panel composed of at least 1 behavioral neurologist and 1 neuropsychologist. The panel reviewed all available records including examinations by the Framingham Heart Study investigators (Z.S.T., R.A., S.A., P.A.W., S.S.), hospital and nursing home records, data from structured family interviews, imaging, and when available, autopsy data. Participants with dementia met criteria outlined in the *Diagnostic and Statistical Manual of Mental Disorders* (Fourth Edition),24 and were required to have symptoms for at least 6 months. Participants with AD met the criteria for definite, probable, or possible AD from the National Institute of Neurological Diseases and Stroke and the Alzheimer's Disease and Related Disorders Association.25 For the present analyses, data for incident dementia obtained until December 31, 2007, were used.

Statistical Analyses

Circulating leptin levels were significantly higher in women and had a right-skewed distribution in each sex. Hence, leptin levels were first natural logarithmically transformed and then standardized within each sex (mean [SD], 0 [1]). Cox regression models were used to relate baseline sex-standardized log-leptin levels to the incidence of dementia and AD after confirming that the assumption of proportionality of hazards was met. Because the risk of dementia is more likely to change as a function of age than of calendar time, age was used as the time scale, except for the Figure, in which calendar time was displayed on the x-axis to facilitate interpretation. Initial analyses were adjusted for age and sex alone (model A). Model B additionally adjusted for 2 major risk factors for dementia in the cohort (ie, a high plasma homocysteine level [ie, level in the top age-specific quartile]) and presence or absence of an apolipoprotein E ε4 allele (APOE ε4). In model C, we additionally adjusted for other potential confounders, including waist-to-hip ratio and systolic blood pressure, which were treated as continuous variables, and presence or absence of antihypertensive treatment, diabetes, smoking, and atrial fibrillation at baseline. In additional analyses, waist-to-hip ratio was replaced with body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) in the multivariable-adjusted models. We also tested for effect modification by waist-to-hip ratio (relationship of leptin with incident dementia and AD) and by presence or absence of an APOE ε4 allele by including interaction terms in the statistical models. Because the interaction with waist-to-hip ratio was significant, the analyses were stratified by waist-to-hip ratio, evaluating the association between leptin and incident dementia and AD separately in participants in the fourth sex-specific waist-to-hip ratio quartile and in quartiles 1 through 3. In addition, the analyses were repeated after excluding participants who were diagnosed with dementia in the first 3 years after the baseline examination to exclude reverse causality (ie, the possi-
bility that weight loss or other neuroendocrine changes secondary to early undetected AD changes were altering baseline leptin levels). Linear regression models were used to relate sex-standardized log leptin to TCBV and to log THV. Covariate adjustments were the same as for the Cox regression models (models A–C). Statistical analyses were performed using SAS statistical software version 9.1 (SAS Institute Inc, Cary, North Carolina) and all statistical tests were 2-sided. A P value of less than .05 was used to indicate statistical significance.

Power Estimates

The study had 90% power to detect hazard ratios of 0.55 or smaller for incident dementia comparing persons with leptin levels above with those below the sex-specific median. For the regression analyses, the study had 90% power to detect partial R^2 values of 0.05 for TCBV and 0.055 for log THV.

RESULTS

Baseline characteristics of the entire study sample and stratified by sex-specific leptin quartiles are displayed in Table 1 (baseline characteristics are stratified by sex in eTable 3). We observed a relatively high prevalence of cardiovascular disease in this elderly sample, which was expected, with an increasing burden of cardiovascular disease and risk factors across leptin quartiles. Leptin levels were significantly higher in women, as shown in prior studies.\(^\text{29}\) Mean (SD) TCBV in our sample was 0.73 (0.03) and mean (SD) log THV was −1.95 (0.71).

Association of Leptin With Incident Dementia and AD

During a median follow-up of 8.3 years (range, 0–15.5 years), 111 participants developed incident dementia; 89 of them were diagnosed with AD. Log-leptin levels showed a strong inverse relationship to the risk of incident all-cause dementia and AD in all models (Table 2), remaining statistically significant after the full covariate adjustment in model C. Additional adjustment for change in waist-to-hip ratio prior to the baseline examination and for depression (Table 2), as well as excluding participants who developed clinical dementia within 3 years after leptin was measured (eTable 4), did not alter the results. Replacing waist-to-hip ratio with BMI revealed comparable results in the multivariable-adjusted model (Table 2) except that the hazard ratio for all-cause dementia was not statistically significant.

The Figure demonstrates the cumulative incidence of AD over 15.5 years. In good agreement with our previous findings,\(^\text{3}\) the incidence of dementia decreases gradually across increasing sex-specific leptin quartiles; thus, a person with a baseline leptin level in the lowest quartile (Q1) had a 25% risk of developing AD after 12 years of follow-up, whereas the corresponding risk for

Table 1. Baseline Characteristics of the Entire Study Sample (N = 785) and Stratified by Leptin Quartiles

<table>
<thead>
<tr>
<th>Leptin Quartile</th>
<th>All (N = 785)</th>
<th>1 (n = 196)</th>
<th>2 (n = 196)</th>
<th>3 (n = 196)</th>
<th>4 (n = 197)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex, No. (%)</td>
<td>490 (62)</td>
<td>123 (63)</td>
<td>122 (62)</td>
<td>123 (63)</td>
<td>122 (62)</td>
</tr>
<tr>
<td>Age, mean (SD), y</td>
<td>79 (5)</td>
<td>79 (5)</td>
<td>79 (5)</td>
<td>79 (4)</td>
<td>78 (4)</td>
</tr>
<tr>
<td>Blood pressure, mean (SD), mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>143 (21)</td>
<td>144 (21)</td>
<td>141 (20)</td>
<td>143 (19)</td>
<td>146 (23)</td>
</tr>
<tr>
<td>Diastolic</td>
<td>72 (11)</td>
<td>71 (12)</td>
<td>71 (10)</td>
<td>74 (10)</td>
<td>74 (11)</td>
</tr>
<tr>
<td>Body mass index, mean (SD)(^a)</td>
<td>28 (5)</td>
<td>24 (3)</td>
<td>28 (3)</td>
<td>29 (4)</td>
<td>32 (5)</td>
</tr>
<tr>
<td>Body mass index ≥30, No./total (%)</td>
<td>221/782 (28)</td>
<td>6/194 (3)</td>
<td>22/195 (11)</td>
<td>73/196 (37)</td>
<td>120/197 (61)</td>
</tr>
<tr>
<td>Waist-to-hip ratio, mean (SD), cm</td>
<td>0.93 (0.09)</td>
<td>0.89 (0.09)</td>
<td>0.92 (0.08)</td>
<td>0.94 (0.08)</td>
<td>0.96 (0.08)</td>
</tr>
<tr>
<td>Antihypertensive treatment, No./total (%)</td>
<td>378/771 (49)</td>
<td>67/194 (35)</td>
<td>93/189 (49)</td>
<td>96/193 (50)</td>
<td>122/195 (63)</td>
</tr>
<tr>
<td>Current smoking, No./total (%)</td>
<td>65/782 (8)</td>
<td>28/196 (14)</td>
<td>17/195 (9)</td>
<td>13/195 (7)</td>
<td>7/196 (4)</td>
</tr>
<tr>
<td>Diabetes, No./total (%)</td>
<td>94/785 (12)</td>
<td>17/196 (9)</td>
<td>16/196 (8)</td>
<td>24/196 (12)</td>
<td>37/197 (19)</td>
</tr>
<tr>
<td>History of atrial fibrillation, No./total (%)</td>
<td>70/785 (9)</td>
<td>18/196 (9)</td>
<td>19/196 (10)</td>
<td>15/196 (8)</td>
<td>18/197 (9)</td>
</tr>
<tr>
<td>History of cardiovascular disease, No./total (%)</td>
<td>240/785 (31)</td>
<td>53/196 (27)</td>
<td>55/196 (28)</td>
<td>66/196 (34)</td>
<td>66/197 (34)</td>
</tr>
<tr>
<td>Ratio of total cholesterol to HDL cholesterol, mean (SD), mg/dL</td>
<td>4.5 (1.5)</td>
<td>3.9 (1.3)</td>
<td>4.6 (1.5)</td>
<td>4.7 (1.5)</td>
<td>5.0 (1.6)</td>
</tr>
<tr>
<td>Leptin, median (range), ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>17.3 (2.4-84.1)</td>
<td>7.4 (2.4-10.6)</td>
<td>14.5 (10.7-17.3)</td>
<td>22.5 (17.4-28.6)</td>
<td>38.0 (28.8-84.1)</td>
</tr>
<tr>
<td>Men</td>
<td>7.2 (1.1-60.6)</td>
<td>3.6 (1.1-4.5)</td>
<td>5.6 (4.6-7.19)</td>
<td>8.9 (7.20-11.4)</td>
<td>14.3 (11.6-60.6)</td>
</tr>
<tr>
<td>Homocysteine, median (range), µmol/L</td>
<td>11.0 (3.5-41.9)</td>
<td>10.0 (4.1-35.5)</td>
<td>11.3 (3.5-40.0)</td>
<td>11.4 (5.1-29.3)</td>
<td>11.0 (4.9-41.9)</td>
</tr>
<tr>
<td>Serum creatinine concentration, mean (SD), mg/dL</td>
<td>0.9 (0.2)</td>
<td>0.9 (0.2)</td>
<td>0.9 (0.2)</td>
<td>0.9 (0.2)</td>
<td>1.0 (0.2)</td>
</tr>
<tr>
<td>High school graduate, No./total (%)</td>
<td>530/767 (69)</td>
<td>134/194 (69)</td>
<td>130/192 (68)</td>
<td>136/192 (71)</td>
<td>130/189 (69)</td>
</tr>
<tr>
<td>CES-D scale score, mean (SD)</td>
<td>7.1 (7.5)</td>
<td>6.7 (7.2)</td>
<td>7.3 (7.3)</td>
<td>7.1 (7.8)</td>
<td>7.2 (7.6)</td>
</tr>
<tr>
<td>≥1 APOE ε4 allele, No./total (%)</td>
<td>153/753 (20)</td>
<td>52/194 (26)</td>
<td>34/196 (18)</td>
<td>44/190 (23)</td>
<td>23/185 (12)</td>
</tr>
</tbody>
</table>

Abbreviations: APOE, apolipoprotein E; CES-D, Center for Epidemiologic Studies for Depression Scale; HDL, high-density lipoprotein.

\(^a\)Calculated as weight in kilograms divided by height in meters squared.

©2009 American Medical Association. All rights reserved.
Table 2. Association of Sex-Standardized Log Leptin With Incident All-Cause Dementia and Incident Alzheimer Disease

<table>
<thead>
<tr>
<th></th>
<th>All-Cause Dementia</th>
<th>Alzheimer Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Cases/ Total HR (95% CI) b P Value</td>
<td>No. of Cases/ Total HR (95% CI) b P Value</td>
</tr>
<tr>
<td>Model A: age- and sex-adjusted</td>
<td>111/785 0.70 (0.57-0.85) <.001</td>
<td>89/785 0.58 (0.47-0.73) <.001</td>
</tr>
<tr>
<td>Model B: model A plus 2 major risk factors for dementia</td>
<td>98/657 0.68 (0.55-0.85) <.001</td>
<td>79/657 0.57 (0.45-0.72) <.001</td>
</tr>
<tr>
<td>Model C: models A and B</td>
<td>95/641 0.68 (0.54-0.87) .002</td>
<td>77/641 0.60 (0.46-0.79) <.001</td>
</tr>
<tr>
<td>Plus waist-to-hip ratio and other vascular risk factors</td>
<td>96/643 0.75 (0.56-1.02) .06</td>
<td>77/643 0.64 (0.46-0.89) .008</td>
</tr>
<tr>
<td>Plus BMI and other vascular risk factors</td>
<td>90/608 0.72 (0.56-0.94) .01</td>
<td>73/608 0.84 (0.48-0.85) .002</td>
</tr>
<tr>
<td>Model D: model C plus change in waist-to-hip ratio</td>
<td>91/629 0.66 (0.51-0.84) .001</td>
<td>74/629 0.59 (0.45-0.78) .001</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; CES-D, Center for Epidemiologic Studies Depression Scale; CI, confidence interval; HR, hazard ratio.

a The number of individuals in the denominator decreased with the number of covariates in the model because some covariates were not available for every patient.

b The HRs are per 1-SD increment in sex-standardized log leptin. Log indicates natural logarithmically transformed.

c Other vascular risk factors adjusted for include systolic blood pressure, presence or absence of antihypertensive treatment, diabetes, smoking, and atrial fibrillation.

d Based on change from twenty-first examination cycle to twenty-second examination cycle (when leptin was assayed).

Association of Leptin Levels With MRI Measures of Brain Aging

The mean interval between leptin measurement and brain MRI was 7.7 years. Leptin levels were positively associated with TCBV in the models adjusting for age, sex, dementia risk factors, vascular risk factors, waist-to-hip ratio, and depression (Table 5). In addition, leptin was inversely associated with THV in age-adjusted and sex-adjusted models; however, additional adjustments for neurodegenerative or vascular risk factors rendered the association nonsignificant (Table 5).

COMMENT

In our moderately sized sample from the general population, higher leptin levels at baseline were prospectively associated with a lower incidence of AD and dementia. The association of high leptin levels with a lower incidence of all-cause dementia and AD remained significant after adjustment for traditional vascular risk factors and for waist-to-hip ratio. Although this association was not statistically significant in participants with higher waist-to-hip ratio and higher BMI, the numbers of participants in those subgroups were limited. The overall findings are intriguing given the emerging, if speculative, hypothesis that one reason for the observed association of midlife central obesity with subsequent risk of AD may be an acquired resistance to effects of leptin, including its neuroprotective effects. In addition, in a smaller subsample of survivors, higher leptin levels were associated with higher TCBV.

A growing body of evidence suggests that leptin has beneficial effects on brain development and function. Leptin-deficient mice have a lower brain weight, an immature expression pattern of synaptic and glial proteins, and disrupted projection pathways within the hypothalamus, indicating that leptin is necessary for normal brain development. Furthermore, leptin appears to mediate structural and functional changes in the hippocampus and to improve memory function. Leptin receptors are present in the CA1 region of the hippocampus and leptin-deficient or insensitive rats show reduced synaptic plasticity and poorer performance in spatial memory tasks. Leptin facilitates N-methyl-D-aspartate receptor-mediated conversion of short-term potentiation to long-term potentiation in the hippocampus and also improves neuronal survival.

Leptin also has been shown to increase apolipoprotein E-dependent β-amyloid uptake into the cell and reduce brain extracellular concentrations of β-amyloid, the major component of...
the neuritic plaques that are a histopathological hallmark of AD.37 Leptin and insulin act in a dose-dependent and synergistic manner to decrease hyperphosphorylation of tau, the primary component of the neurofibrillary tangle, the second major histopathological hallmark of AD.38 Most interesting is a recent observation that chronic leptin treatment improved memory performance in transgenic animal models of AD.39
Our epidemiological observations of an inverse association of baseline leptin concentrations with incident dementia in general and with AD in particular are consistent with these experimental results, as are our observations of a positive relationship of leptin with TCBV and (in age-adjusted and sex-adjusted models but not fully adjusted models) with THV. A 2008 small study of brain MRI in 34 elderly volunteers found that higher leptin levels were associated with larger hippocampal and parahippocampal gray matter volumes, but it did not observe any association of leptin with

Table 3. Hazard Ratios (HRs) for Incident All-Cause Dementia and Alzheimer Disease According to Sex-Specific Quartiles of Baseline Leptin Levels

<table>
<thead>
<tr>
<th>Leptin Sex-Specific Quartiles</th>
<th>All-Cause Dementiaa</th>
<th></th>
<th>Alzheimer Diseaseb</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Events/Persons at Risk</td>
<td>HR (95% CI)</td>
<td>P Value</td>
<td>No. of Events/Persons at Risk</td>
</tr>
<tr>
<td>Adjusted for age and sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>42/196</td>
<td>1 [Reference]</td>
<td>.001</td>
<td>38/196</td>
</tr>
<tr>
<td>Q2</td>
<td>29/196</td>
<td>0.67 (0.42-1.08)</td>
<td>.10</td>
<td>23/196</td>
</tr>
<tr>
<td>Q3</td>
<td>23/196</td>
<td>0.52 (0.31-0.86)</td>
<td>.01</td>
<td>20/196</td>
</tr>
<tr>
<td>Q4</td>
<td>17/197</td>
<td>0.40 (0.23-0.71)</td>
<td>.002</td>
<td>8/197</td>
</tr>
<tr>
<td>Plus high plasma homocysteine level and APOE ε4 allelec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>37/165</td>
<td>1 [Reference]</td>
<td>.001</td>
<td>33/165</td>
</tr>
<tr>
<td>Q2</td>
<td>27/158</td>
<td>0.86 (0.50-1.46)</td>
<td>.57</td>
<td>22/158</td>
</tr>
<tr>
<td>Q3</td>
<td>19/164</td>
<td>0.48 (0.26-0.87)</td>
<td>.02</td>
<td>17/164</td>
</tr>
<tr>
<td>Q4</td>
<td>12/154</td>
<td>0.42 (0.20-0.84)</td>
<td>.02</td>
<td>5/154</td>
</tr>
</tbody>
</table>

Abbreviations: APOE ε4, apolipoprotein E ε4 allele; CI, confidence interval. aP<.001 for trend for model adjusted for age and sex and the model adjusted for age, sex, high plasma homocysteine level, and APOE ε4 allele. bP=.001 for trend for both the model adjusted for age and sex and the model adjusted for age, sex, high plasma homocysteine level, and APOE ε4 allele. cHigh plasma homocysteine level indicates a level in the top age-specific quartile.

Table 4. Association of Sex-Standardized Log Leptin With Incident All-Cause Dementia and Incident Alzheimer Disease

<table>
<thead>
<tr>
<th>Modela</th>
<th>All-Cause Dementia</th>
<th></th>
<th>Alzheimer Disease</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Cases/Total</td>
<td>HR (95% CI)b</td>
<td>P Value</td>
<td>No. of Cases/Total</td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartiles 1-3</td>
<td>79/586</td>
<td>0.57 (0.45-0.73)</td>
<td><.001</td>
<td>70/586</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>31/195</td>
<td>0.92 (0.60-1.40)</td>
<td>.09</td>
<td>19/195</td>
</tr>
<tr>
<td>Body mass indexc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><30</td>
<td>95/561</td>
<td>0.69 (0.55-0.87)</td>
<td>.002</td>
<td>79/561</td>
</tr>
<tr>
<td>≥30</td>
<td>16/221</td>
<td>1.87 (0.86-4.06)</td>
<td>.11</td>
<td>10/221</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; HR, hazard ratio. aAdjusted for age and sex only. The test for interaction between obesity and leptin for all-cause dementia was significant (P=.02) but not for Alzheimer disease (P=.74). Log indicates natural logarithmically transformed. bThe HRs are per 1-SD increment in sex-standardized log leptin. cCalculated as weight in kilograms divided by height in meters squared.

Table 5. Association of Sex-Standardized Log Leptin Levels With Magnetic Resonance Imaging Precursors of Subclinical Alzheimer Diseasea

<table>
<thead>
<tr>
<th>Total Cerebral Brain Volume</th>
<th>Temporal Horn Volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β (SE)b</td>
<td>P Value</td>
<td>β (SE)b</td>
</tr>
<tr>
<td>Model A: age- and sex-adjusted</td>
<td>0.76 (0.26)</td>
<td>.004</td>
</tr>
<tr>
<td>Model B: model A plus 2 risk factors for dementiaa</td>
<td>0.80 (0.28)</td>
<td>.005</td>
</tr>
<tr>
<td>Model C: models A and B plus other vascular risk factorsb</td>
<td>0.88 (0.31)</td>
<td>.005</td>
</tr>
<tr>
<td>Model D: model C plus CES-D scale</td>
<td>0.88 (0.31)</td>
<td>.005</td>
</tr>
</tbody>
</table>

Abbreviations: CES-D, Center for Epidemiologic Studies for Depression Scale; SE, standard error. aRegression coefficient β indicates the increase in total cerebral brain volume and temporal horn volume per 1-SD increment in sex-standardized log leptin. bAdjusted for model A, high plasma homocysteine level (ie, level in the top age-specific quartile), and presence or absence of an apolipoprotein E ε4 allele. cAdjusted for models A and B plus waist-to-hip ratio, systolic blood pressure, presence or absence of antihypertensive treatment, diabetes, smoking, and atrial fibrillation.
pared with THV. One limitation is the lower inherent variability when com-
ting risk factors, suggesting that leptin might act along a new pathway relevant to cognitive function in humans. Although our study was ob-
servational, the biological plausibility of the findings, the temporal relations-
ships (leptin measurements antedated dementia), and the consistency of re-
ults in multiple analyses (including an association with subclinical structural indices that have been correlated with cog-
nitive function) suggest that the association may be a causal one, a premise that merits further investigation. The as-
sociation of leptin with dementia was found in nonobese individuals but was not statistically significant in obese in-
dividuals. However, the number of obese participants and events in that group are substantially smaller compared with the nonobese participants, limiting the sta-
tistical power to detect modest associa-
tions.

The availability of prospective data on hard clinical end points (incident dementia and AD) as well as measures of subclinical disease (TCBV and THV), the comprehensive assessment of co-
variate, and the community-based sample strengthen this study. One po-
tential explanation for the stronger as-
sociation of TCBV might be that it is a more robust and reliable measure, with a lower inherent variability when com-
pared with THV. One limitation is the restriction of this sample to older in-
dividuals with European ancestry; thus, it is unclear whether these findings are applicable to other ethnicities or age groups. Furthermore, we did not mea-
sure leptin in the cerebrospinal fluid or in the brain parenchyma. However, the correlation between plasma and cere-
brospinal fluid leptin is high. Given our sample size, we had only modest
total brain volumes; thus, it is likely that the study was underpowered to detect an association such as we observed. Together, these data support the concept that leptin exerts multiple functions in the brain, beyond those involved in food consumption and energy expenditure. Interestingly, the association of leptin with AD and all-cause dementia is in-
dependent of classic neurodegenerative and vascular risk factors, suggesting that leptin might act along a new pathway relevant to cognitive function in humans. Although our study was ob-
servational, the biological plausibility of the findings, the temporal relations-
ships (leptin measurements antedated dementia), and the consistency of re-
ults in multiple analyses (including an association with subclinical structural indices that have been correlated with cog-
nitive function) suggest that the association may be a causal one, a premise that merits further investigation. The as-
sociation of leptin with dementia was found in nonobese individuals but was not statistically significant in obese in-
dividuals. However, the number of obese participants and events in that group are substantially smaller compared with the nonobese participants, limiting the sta-
tistical power to detect modest associa-
tions.

The availability of prospective data on hard clinical end points (incident dementia and AD) as well as measures of subclinical disease (TCBV and THV), the comprehensive assessment of co-
variate, and the community-based sample strengthen this study. One po-
tential explanation for the stronger as-
sociation of TCBV might be that it is a more robust and reliable measure, with a lower inherent variability when com-
pared with THV. One limitation is the restriction of this sample to older in-
dividuals with European ancestry; thus, it is unclear whether these findings are applicable to other ethnicities or age groups. Furthermore, we did not mea-
sure leptin in the cerebrospinal fluid or in the brain parenchyma. However, the correlation between plasma and cere-
brospinal fluid leptin is high. Given our sample size, we had only modest

power to exclude multivariable-adjusted associations of leptin with THV and we cannot rule out that the re-
ults relating leptin to MRI measures of brain aging (which were obtained al-
most 8 years after leptin was assayed) were biased through selective or con-
tditional survival. In addition, no mea-
sures of physical activity, a potential confounder of the observed associa-
tions, were available at the baseline ex-
amination. Leptin levels were deter-
mimed only once in each participant. This might have led to some random misclassification, likely biasing our re-
ults toward the null hypothesis, al-
though the possibility of differential misclassification cannot be excluded. The literature indicates that leptin lev-
els have intraclass correlation coefficients of 0.80 over 3 years. Leptin lev-
els were not measured in our par-
ticipants while they were middle-aged, so we are unable to address the relationship between mid-life leptin and cognitive outcomes. Furthermore, whereas published data suggest that lep-
tin levels remain stable over time, the temporal stability of levels in obese in-
dividuals has not been specifically ad-
dressed.

In conclusion, in our community-
based sample, higher baseline concen-
trations of leptin were associated with a reduced incidence of dementia and AD, even after adjustment for waist-to-
hip ratio. Furthermore, higher leptin lev-
els were associated with larger brain parenchymal and smaller ventricular volumes. These findings are consis-
tent with recent experimental data indi-
icating that leptin improves memory function in animals through direct ef-
ffects on the hippocampus and strength-
ens the evidence that leptin is a hor-
mone with a broad set of actions in the central nervous system. Due to the ex-
ploratory character of the present anal-
yses, we did not adjust for multiple com-
parisons and acknowledge that our findings require confirmation in inde-
pendent samples. If our findings are con-
"
PLASMA LEPTIN LEVELS WITH INCIDENT ALZHEIMER DISEASE