Concurrent Naltrexone and Prolonged Exposure Therapy for Patients With Comorbid Alcohol Dependence and PTSD: A Randomized Clinical Trial

Edna B. Foa, PhD; David A. Yusko, PsyD; Carmen P. McLean, PhD; Michael K. Suvak, PhD; Donald A. Bux Jr, PhD; David Oslin, MD; Charles P. O’Brien, MD, PhD; Patricia Imms, RN; David S. Riggs, PhD; Joseph Volpicelli, MD, PhD

**IMPORTANCE** Alcohol dependence comorbid with posttraumatic stress disorder (PTSD) has been found to be resistant to treatment. In addition, there is a concern that prolonged exposure therapy for PTSD may exacerbate alcohol use.

**OBJECTIVE** To compare the efficacy of an evidence-based treatment for alcohol dependence (naltrexone) plus an evidence-based treatment for PTSD (prolonged exposure therapy), their combination, and supportive counseling.

**DESIGN, SETTING, AND PARTICIPANTS** A single-blind, randomized clinical trial of 165 participants with PTSD and alcohol dependence conducted at the University of Pennsylvania and the Philadelphia Veterans Administration. Participant enrollment began on February 8, 2001, and ended on June 25, 2009. Data collection was completed on August 12, 2010.

**INTERVENTIONS** Participants were randomly assigned to (1) prolonged exposure therapy plus naltrexone (100 mg/d), (2) prolonged exposure therapy plus pill placebo, (3) supportive counseling plus naltrexone (100 mg/d), or (4) supportive counseling plus pill placebo. Prolonged exposure therapy was composed of 12 weekly 90-minute sessions followed by 6 biweekly sessions. All participants received supportive counseling.

**MAIN OUTCOMES AND MEASURES** The Timeline Follow-Back Interview and the PTSD Symptom Severity Interview were used to assess the percentage of days drinking alcohol and PTSD severity, respectively, and the Penn Alcohol Craving Scale was used to assess alcohol craving. Independent evaluations occurred prior to treatment (week 0), at posttreatment (week 24), and at 6 months after treatment discontinuation (week 52).

**RESULTS** Participants in all 4 treatment groups had large reductions in the percentage of days drinking (mean change, −63.9% [95% CI, −73.6% to −54.2%] for prolonged exposure therapy plus naltrexone; −63.9% [95% CI, −73.9% to −53.8%] for prolonged exposure therapy plus placebo; −69.9% [95% CI, −78.7% to −61.2%] for supportive counseling plus naltrexone; and −61.0% [95% CI, −68.9% to −53.0%] for supportive counseling plus placebo). However, those who received naltrexone had lower percentages of days drinking than those who received placebo (mean difference, 7.93%; P = .008). There was also a reduction in PTSD symptoms in all 4 groups, but the main effect of prolonged exposure therapy was not statistically significant. Six months after the end of treatment, participants in all 4 groups had increases in percentage of days drinking. However, those in the prolonged exposure therapy plus naltrexone group had the smallest increases.

**CONCLUSIONS AND RELEVANCE** In this study of patients with alcohol dependence and PTSD, naltrexone treatment resulted in a decrease in the percentage of days drinking. Prolonged exposure therapy was not associated with an exacerbation of alcohol use disorder.

**TRIAL REGISTRATION** clinicaltrials.gov Identifier: NCT00006489


Author Affiliations: Department of Psychiatry, University of Pennsylvania, Philadelphia (Foa, Yusko, McLean, O’Brien, Imms); Department of Psychology, University of Suffolk, Boston, Massachusetts (Suvak); Department of Psychiatry, Montefiore Medical Center, Bronx, New York (Bux); VISN 4 Mental Illness Research Education and Clinical Center, Veterans Administration, Philadelphia, Pennsylvania (Oslin); Department of Medical and Clinical Psychology, Uniformed Services University, Bethesda, Maryland (Riggs); Institute of Addiction Medicine, Plymouth Meeting, Pennsylvania (Volpicelli); Department of Psychiatry, Temple University, Philadelphia, Pennsylvania (Volpicelli).

Corresponding Author: Edna B. Foa, PhD, Department of Psychiatry, University of Pennsylvania, 3535 Market St, Sixth Floor, Philadelphia, PA 19104 (foa@mail.med.upenn.edu).
Alcohol dependence and posttraumatic stress disorder (PTSD) are highly comorbid, yet little is known about how best to treat this large, highly dysfunctional, and distressed population. Even though studies of treatments for alcohol dependence do not exclude patients with PTSD, symptoms of PTSD are not targeted with these treatments. The failure to address PTSD is deleterious because patients with alcohol dependence and PTSD relapse sooner than patients with alcohol dependence and other comorbid Axis I psychiatric diagnoses. In contrast, treatment studies for PTSD typically exclude patients with comorbid alcohol dependence because of the concern that alcohol dependence will interfere with the patient’s ability to benefit from PTSD treatment or fear that the PTSD treatment will exacerbate drinking behavior.

Previous trials of concurrent therapies for substance use disorders and PTSD have demonstrated improvements in PTSD, but have not shown clear benefits for the treatment of substance use disorder. Only 1 published randomized trial used cognitive behavioral therapy for alcohol dependence plus 150 mg of sertraline (or placebo) for PTSD. Alcohol use and PTSD symptoms decreased during treatment, but the study design did not allow separating the unique effects of cognitive behavioral therapy from the effects of the medication.

We compared the efficacy of naltrexone, which is an evidence-based treatment for alcohol dependence, and prolonged exposure therapy, which is an evidence-based treatment for PTSD, separately and in combination, along with supportive counseling. Naltrexone is hypothesized to decrease drinking via attenuation of craving for alcohol, and prolonged exposure therapy is hypothesized to reduce drinking via amelioration of PTSD symptoms that can lead to self-medication with alcohol. Our 2 × 2 study design tested the hypotheses that (1) participants receiving naltrexone would show significantly greater reductions in drinking than those receiving placebo; (2) participants receiving prolonged exposure therapy would show greater reductions in PTSD symptom severity than those who do not receive prolonged exposure therapy; and (3) participants receiving combined treatment would show superior outcomes in both decreased drinking and PTSD severity.

Methods

Participants

Participants were treatment-seeking individuals recruited through advertisements and professional referrals to the University of Pennsylvania’s Center for the Treatment and Study of Anxiety and the Philadelphia Veterans Affairs Hospital. The demographic and trauma information collected at baseline appear in Table 1. Inclusion criteria were (1) current PTSD and alcohol dependence according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV); (2) clinically significant trauma-related symptoms, as indicated by a score of at least 15 on the PTSD Symptom Severity Interview (PSS-I); and (3) heavy drinking in the past 30 days, defined as an average of more than 12 standard alcohol drinks per week with at least 1 day of 4 or more drinks determined by the Timeline Follow-Back Interview (TFBI). Exclusion criteria were (1) current substance dependence other than nicotine or cannabis; (2) current psychotic disorder (eg, schizophrenia, bipolar disorder); (3) clinically significant suicidal or homicidal ideation; (4) opiate use in the month prior to study entry; (5) medical illnesses that could interfere with treatment (eg, AIDS, active hepatitis); or (6) pregnancy or nursing.

Procedure

The University of Pennsylvania institutional review board approved the protocol. After receiving written informed consent, participants completed an intake assessment, which included a physical examination, laboratory assessments, and a psychiatric evaluation. Eligible participants completed a baseline evaluation and were then randomly assigned to 1 of 4 treatment groups in which they received 100 mg/d of naltrexone or placebo plus prolonged exposure therapy or no prolonged exposure therapy. Prior to beginning treatment, participants completed outpatient medical detoxification (≥3 consecutive days of abstinence from alcohol) measured via self-report and breath testing for alcohol. During detoxification, oxazepam was administered as needed to manage symptoms of alcohol withdrawal. All patients received supportive counseling focused on medication management (see treatment descriptions below). Participant enrollment began on February 8, 2001, and ended on June 25, 2009 (Figure 1). Data collection was completed on August 12, 2010.

Measures

The PSS-I is a clinician-rated interview corresponding to the DSM-IV symptom criteria. It was administered by evaluators, who were blinded to group assignment, prior to treatment, every 4 weeks during treatment, at posttreatment (week 24), and at follow-up (weeks 38 and 52). The PSS-I has a range of scores from 0 to 51 with higher scores indicating more severe PTSD symptoms.

The TFBI is an interview that uses a calendar method to assess when and how much alcohol was consumed. The TFBI was used to calculate the percentage of days drinking (PDD) at pretreatment, each visit during treatment, posttreatment (week 24), and 6 months after treatment discontinuation (week 52). Because the number of days between assessment points varied, we presented drinking days as a percentage of total days. For descriptive purposes, we also calculated the number of days drinking in the past 90 days at baseline and week 52. Higher scores for PDD and drinking days in the past 90 days indicate worse drinking outcomes.

The Penn Alcohol Craving Scale is a 5-item self-administered measure of alcohol craving during the prior week that was completed at every visit. The range of possible scores is 0 to 30, with higher scores indicating a higher level of craving.

Treatments

Naltrexone is an opiate antagonist approved by the US Food and Drug Administration to treat alcohol dependence. The target dose of naltrexone was 100 mg/d, starting with 50 mg/d for...
Table 1. Baseline Characteristics*

<table>
<thead>
<tr>
<th></th>
<th>PTSD Exposure Therapy</th>
<th>Supportive Counseling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plus Naltrexone</td>
<td>Plus Naltrexone</td>
</tr>
<tr>
<td></td>
<td>(n = 40)</td>
<td>(n = 42)</td>
</tr>
<tr>
<td>Age, mean (95% CI), y</td>
<td>40.1 (36.7-43.5)</td>
<td>44.9 (41.8-47.9)</td>
</tr>
<tr>
<td></td>
<td>44.7 (41.8-47.7)</td>
<td>41.2 (38.6-43.9)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>13 (32.5)</td>
<td>16 (38.1)</td>
</tr>
<tr>
<td>Male</td>
<td>27 (67.5)</td>
<td>26 (61.9)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>30 (75.0)</td>
<td>21 (50.0)</td>
</tr>
<tr>
<td>White</td>
<td>9 (22.5)</td>
<td>19 (45.2)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 (2.5)</td>
<td>2 (4.8)</td>
</tr>
<tr>
<td>Native American</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1 (2.3)</td>
</tr>
<tr>
<td>Types of trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexual assault</td>
<td>12 (30.0)</td>
<td>11 (26.2)</td>
</tr>
<tr>
<td>Physical assault</td>
<td>16 (40.0)</td>
<td>18 (42.9)</td>
</tr>
<tr>
<td>Combat</td>
<td>4 (10.0)</td>
<td>4 (9.5)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (20.0)</td>
<td>9 (21.4)</td>
</tr>
<tr>
<td>Time since trauma, mean (SD), y</td>
<td>12.3 (13.5)</td>
<td>12.2 (13.2)</td>
</tr>
</tbody>
</table>

Abbreviation: PTSD, posttraumatic stress disorder.

* Values are expressed as number (percentage) unless otherwise indicated. All participants received supportive counseling.

Figure 1. Flow of Participants Through the Trial

- 657 Patients assessed for eligibility via telephone
- 492 Excluded
- 131 Did not meet inclusion criteria
- 113 Did not have posttraumatic stress disorder (PTSD)
- 18 Did not have alcohol dependence
- 158 Met exclusion criteria
- 67 Drug use
- 45 Psychotic disorder
- 22 Contraindicated medication use
- 14 Suicidal or homicidal
- 10 Severe medical condition
- 203 Refused to participate

- 40 Randomized to receive PTSD exposure therapy plus naltrexone (100 mg/d)
- 26 Received intervention as randomized
- 14 Did not receive intervention as randomized
- 9 No response or withdrew
- 2 Serious adverse event
- 3 Scheduling conflict
- 23 Completed 3-mo follow-up
- 2 Lost to 3-mo follow-up
- 1 Not available

- 40 Randomized to receive PTSD exposure therapy plus pill placebo
- 25 Received intervention as randomized
- 15 Did not receive intervention as randomized
- 9 No response or withdrew
- 4 Serious adverse event
- 2 Scheduling conflict
- 24 Completed 3-mo follow-up
- 0 Lost to 3-mo follow-up
- 1 Not available

- 42 Randomized to receive supportive counseling plus naltrexone (100 mg/d)
- 29 Received intervention as randomized
- 13 Did not receive intervention as randomized
- 10 No response or withdrew
- 3 Serious adverse event
- 0 Scheduling conflict
- 20 Completed 3-mo follow-up
- 8 Lost to 3-mo follow-up
- 1 Not available

- 43 Randomized to receive supportive counseling plus pill placebo
- 32 Received intervention as randomized
- 11 Did not receive intervention as randomized
- 6 No response or withdrew
- 3 Serious adverse event
- 1 Scheduling conflict
- 1 Died

- 26 Completed 3-mo follow-up
- 2 Lost to 3-mo follow-up
- 4 Not available

- 30 Completed 6-mo follow-up
- 22 Completed 6-mo follow-up
- 3 Lost to 6-mo follow-up

All participants included in primary analysis

*Some participants who did not complete the 3-month follow-up returned to complete the 6-month follow-up.
a minimum of 3 days and titrating up within 1 week; 3 pa-
tients were unable to tolerate the 100-mg/d dose and were ti-
trated down to 50 mg/d. The 100-mg/d dose of naltrexone used
in this study is higher than the 50-mg/d dose recommended
for treatment of alcohol dependence, but much lower than the
300-mg/d dose that has been associated with elevations in liver
enzyme levels.20 Compliance with the dosing regimen was
monitored by weekly pill counts during the first 3 months and
by biweekly counts for the next 3 months.

Prolonged exposure therapy consisted of 12 weekly 90-
minute sessions followed by 6 biweekly sessions and in-
cluded repeated imaginal exposure (ie, revisiting and recount-
ing traumatic memories) and processing the memory (ie, dis-
cussing thoughts and feelings related to revisiting the
memory).21 Participant homework consisted of repeated lis-
tening to a recording of the recounting made during the ses-
ion, and repeated in vivo exposure to safe situations he/she
avoided because of trauma-related distress. When the partici-

dant demonstrated no or minimal distress when recounting
the traumatic memory and confronting traumatic reminders,
any remaining sessions focused on other psychosocial prob-
lems.

Supportive counseling was based on the BRENDA model,22
which combines medication management with compliance en-

dhancement techniques based on motivational interviewing.23
All participants received eighteen 30- to 45-minute sessions
of supportive counseling, administered by a study nurse, which
included dispensing medication, monitoring compliance, as-

sessing and providing education about alcoholism, and offer-
ing support and advice concerning drinking. Visits were weekly
during the first 3 months and biweekly during the remaining
3 months.

For more details about the treatment methods and sample,
see Foa and Williams.24

Data Analyses

Two-tailed tests adopting an α level of 0.05 were conducted to
test differences in change in outcomes among treatment
groups. We conducted piecewise growth modeling using hi-

erarchical linear and nonlinear modeling (version 6.34)25 to es-
timate different slopes during the treatment phase and the fol-

ow-up phase.26 Hierarchical linear and nonlinear modeling
is robust to missing data due to dropout during treatment and
follow-up.27 Using hierarchical linear and nonlinear modeling
does not exclude any data, thus rendering replacement or
imputation for missing values unnecessary.28 A nonlinear
model (natural log number of weeks) fit the data best for the
PSS-I and alcohol craving outcomes; for PDD, a piecewise model
with a hyperbolic transformation of the number of weeks fit
the data best.

All change parameters were modeled as random effects.
The main effects of treatment were evaluated by coding time
variables such that intercept terms of the piecewise growth
models represented posttreatment outcome levels (ie, center-
ting the time variables at posttreatment), and by including
dummy-coded treatment group variables as predictors of the
intercept. A graphical examination of the growth curve re-

sults revealed potential treatment differences in change over
time during the follow-up period. Therefore, we conducted ex-
ploratory tests for the following interactions during follow-
up: prolonged exposure therapy × time, naltrexone × time, and
prolonged exposure therapy × naltrexone × time. Dummy-
coded variables and interaction terms for prolonged expo-

sure therapy and naltrexone were included in the level 2 com-
ponent of the model as predictors of the change parameter
during follow-up. The Cohen 𝑑 statistic is reported for between-
group effect sizes (𝑑 = 0.25 for small, 𝑑 = 0.50 for medium, and
𝑑 = 0.80 for large).29 All analyses were conducted with the in-
tent-to-treat sample.

The Mplus statistical software version 5.1 was used for a
Monte Carlo simulation post hoc power analysis, which used
parameter estimates from the data analysis to provide esti-
mates of obtained power.30,31 These analyses produced power
estimates of 0.90 or higher to detect medium (𝑑 = 0.50) effect
size differences of 20.6 to 22.8 for change in PDD and 7.1 to 10.2
for change in PTSD severity (on the PSS-I) during treatment.
The analyses also produced power estimates of 0.90 or higher
to detect medium effect size differences of 17.4 to 18.1 for PDD
and 7.1 to 8.4 for PTSD severity (PSS-I) during follow-up. Ex-
ploratory χ2 analyses were conducted to examine differences
in the percentage of participants classified as having achieved
low PTSD severity (ie, ≤10 on the PSS-I at 6 months after treat-
ment discontinuation).

Results

Preliminary Analyses

There were 165 participants with PTSD and alcohol depen-
dence. Fifty-three participants (32.1%) dropped out of the
study prior to the end of the treatment period. This rate did
not significantly differ (χ2 = 1.55; 𝑃 = .67) across treatment
groups (𝑛 = 165): 35% for prolonged exposure therapy plus
naltrexone, 38% for prolonged exposure therapy plus pla-

cebo, 31% for supportive counseling plus naltrexone, and
26% for supportive counseling plus placebo. Twelve partici-
pants were removed from the study because of serious adverse
events (serious suicidal ideation, 𝑛 = 7; serious medical
illness, 𝑛 = 3; psychotic symptoms, 𝑛 = 1; death, 𝑛 = 1; how-
ever, none of these events was determined to be
related to the study). Analysis of variance and χ2 analy-

sis revealed no significant differences for demographic and pre-
treatment outcome variables across groups (Table 1). The
median number of years since the index trauma was 5.15
(25th percentile, 1.34; 75th percentile, 20.21).

Treatment Adherence

Prolonged Exposure Therapy

On average, participants completed a mean of 6.18 (SD, 3.86)
exposure sessions in the prolonged exposure therapy plus nalt-
rexone group vs a mean of 6.48 (SD, 3.49) sessions in the
prolonged exposure therapy plus placebo group (𝑃 = .73). Treat-
ment adherence for prolonged exposure therapy was moni-
tored by 3 doctoral-level clinicians. Of the total pro-
longed exposure therapy sessions provided, 15% were ran-

domly selected to assess treatment adherence. The overall ad-

jama.com
herence rate was 96%. Three adherence raters performed separate ratings on 10% of the sessions. Intrarater reliability was 97.8% (95% CI, 91.7%-99.9%).

Medication
The average number of days of detoxification was 4.45 (range, 3-14 days). All but 10 participants were able to reach and remain on 100 mg/d of naltrexone; 9 were titrated down to 50 mg/d and 1 participant refused medication and dropped out of the study. There were 141 participants (85%) who met criteria for adherence to medication and supportive counseling (defined as ≥80% adherence to medication and attendance to supportive counseling): 34 (85.0%) in the prolonged exposure therapy plus naltrexone group, 34 (85.0%) in the prolonged exposure therapy plus placebo group, 36 (85.7%) in the supportive counseling plus naltrexone group, and 37 (86.0%) in the supportive counseling plus placebo group. Differences between groups were not statistically significant (P = .99).

Drinking Outcome
Participants in all groups reported reductions in PDD during treatment (Table 2). At posttreatment, a significant main effect of naltrexone emerged (mean difference = 7.92%, P = .008, d = 0.42) such that patients receiving naltrexone had lower PDD (mean, 5.38%; 95% CI, 2.23% to 8.54%) than patients receiving placebo (mean, 13.29%; 95% CI, 8.45% to 18.12%). At posttreatment, the main effect of prolonged exposure therapy (P = .51) and the interaction of naltrexone × prolonged exposure therapy (P = .53) were not statistically significant. During the 6 months following treatment discontinuation, a significant prolonged exposure therapy × time interaction emerged (P = .01, d = 0.41) such that patients receiving prolonged exposure therapy had a mean change in PDD during follow-up of 3.6% (95% CI, −2.2% to 9.5%), which was not significant, whereas patients not receiving prolonged exposure therapy exhibited a mean increase in PDD during follow-up of 15.9% (95% CI, 8.8% to 23.1%). The interactions of naltrexone × time (P = .98) and prolonged exposure therapy × naltrexone × time (P = .39) were not statistically significant during follow-up.

All groups showed reductions in alcohol craving during treatment (Table 2). A significant main effect of naltrexone emerged (mean difference = 3.14, P = .008, d = 0.43) at posttreatment such that the 2 naltrexone groups had less alcohol craving (mean craving, 6.6%; 95% CI, 5.2-7.9) than the 2 placebo groups (mean craving, 9.7%; 95% CI, 7.9-11.6). Neither the main effect of prolonged exposure therapy (P = .08) nor the interaction of prolonged exposure therapy × naltrexone (P = .44) was significant at posttreatment. During follow-up, the interactions of prolonged exposure therapy × time (P = .55), naltrexone × time (P = .66), and prolonged exposure therapy × naltrexone × time (P = .63) were not statistically significant, with none of the groups exhibiting significant changes in alcohol craving during follow-up.

PTSD Outcome
All 4 groups showed reductions in PSSI (or PTSD symptoms) during the treatment period (Table 3). The main effect of prolonged exposure therapy at posttreatment was not significant (mean difference = 2.63, P = .15, d = 0.23). At posttreatment, the main effects of naltrexone (P = .70) and the interaction of prolonged exposure therapy × naltrexone (P = .80) were also not significant. The interactions of prolonged exposure therapy × time (P = .55), naltrexone × time (P = .66), and prolonged exposure therapy × naltrexone × time (P = .63) were not statistically significant for the follow-up period.

In an exploratory analysis, 70.0% of participants in the prolonged exposure therapy plus naltrexone group achieved a low level of PTSD severity (ie, ≤10 on the PSS-I at 6 months after

### Table 2. Summary of the Piecewise Growth Curve Models for Percentage of Days Drinking and Craving to Drink*

<table>
<thead>
<tr>
<th></th>
<th>Pretreatment (WK 0)</th>
<th>Posttreatment (WK 24)</th>
<th>Change Between Pretreatment and Posttreatment</th>
<th>Follow-up (WK 52)</th>
<th>Change Between Posttreatment and Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Drinking</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTSD exposure therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus naltrexone</td>
<td>71.2 (62.5 to 79.9)</td>
<td>7.3 (1.9 to 12.7)</td>
<td>−63.9 (−73.6 to −54.2)</td>
<td>8.8 (3.3 to 14.3)</td>
<td>1.5 (−0.9 to 3.8)</td>
</tr>
<tr>
<td>Plus placebo</td>
<td>78.6 (71.4 to 85.6)</td>
<td>13.4 (5.5 to 21.1)</td>
<td>−63.9 (−73.9 to −53.8)</td>
<td>18.9 (8.8 to 29.1)</td>
<td>5.6 (0.2 to 11.0)</td>
</tr>
<tr>
<td>Supportive counseling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus naltrexone</td>
<td>75.4 (67.1 to 83.5)</td>
<td>3.5 (0.1 to 6.8)</td>
<td>−69.9 (−78.7 to −61.2)</td>
<td>21.5 (10.6 to 32.4)</td>
<td>18.0 (13.2 to 22.8)</td>
</tr>
<tr>
<td>Plus placebo</td>
<td>74.1 (66.4 to 81.8)</td>
<td>13.2 (7.3 to 19.2)</td>
<td>−61.0 (−68.9 to −53.0)</td>
<td>27.3 (14.7 to 40.0)</td>
<td>14.1 (8.8 to 19.4)</td>
</tr>
<tr>
<td><strong>Craving to drink</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTSD exposure therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus naltrexone</td>
<td>17.9 (15.8 to 20.1)</td>
<td>5.1 (3.4 to 6.7)</td>
<td>−13.6 (−16.1 to −11.2)</td>
<td>6.0 (4.0 to 8.1)</td>
<td>1.0 (−1.2 to 2.2)</td>
</tr>
<tr>
<td>Plus placebo</td>
<td>19.2 (16.3 to 22.1)</td>
<td>9.1 (6.1 to 12.2)</td>
<td>−10.1 (−13.5 to −6.63)</td>
<td>6.9 (4.2 to 9.7)</td>
<td>−2.1 (−5.2 to 1.0)</td>
</tr>
<tr>
<td>Supportive counseling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus naltrexone</td>
<td>17.7 (15.3 to 20.0)</td>
<td>8.0 (6.0 to 10.1)</td>
<td>−9.8 (−12.3 to −7.2)</td>
<td>7.4 (4.2 to 10.6)</td>
<td>−0.6 (−3.4 to 2.3)</td>
</tr>
<tr>
<td>Plus placebo</td>
<td>18.7 (16.7 to 20.7)</td>
<td>10.3 (8.2 to 12.4)</td>
<td>−8.7 (−11.4 to −6.1)</td>
<td>8.9 (6.4 to 11.4)</td>
<td>−1.4 (−3.4 to 0.7)</td>
</tr>
</tbody>
</table>

Abbreviation: PTSD, posttraumatic stress disorder.

* All participants received supportive counseling.
treatment discontinuation) vs 55.0% of participants in the prolonged exposure therapy plus placebo group, 43.9% of the supportive counseling plus naltrexone group, and 37.2% of the supportive counseling plus placebo group (P = .02).

Discussion

This is the first study, to our knowledge, that used a design which allowed for separate examination of the effects of an evidence-based medication for alcohol dependence (naltrexone), an evidence-based psychotherapy for PTSD (prolonged exposure), and their combination, on both drinking and PTSD symptoms among individuals with comorbid alcohol dependence and PTSD. Participants in all 4 groups showed a significant reduction in PDD. However, at posttreatment, participants who received naltrexone showed significantly lower PDD than participants who received placebo. This finding is consistent with previous studies showing that naltrexone is an effective treatment for alcohol dependence. One hypothesized mechanism of naltrexone's effect on drinking is through the attenuation of alcohol craving. The results of the current study support this hypothesis; participants who received naltrexone had lower cravings for alcohol than those who received placebo.

All 4 groups showed a significant reduction in PTSD symptoms during treatment. However, there was no increased improvement in PTSD symptoms from prolonged exposure therapy compared with supportive counseling, which is inconsistent with a large body of evidence that prolonged exposure is an effective treatment for PTSD. This null finding may be due to the fact that all participants received supportive counseling. Perhaps the nonspecific factors involved in supportive counseling masked some of the unique effects of prolonged exposure therapy. In addition, attendance to prolonged exposure therapy sessions was lower in this study than in other trials of prolonged exposure therapy. The relatively low number of prolonged exposure therapy sessions received by the participants, combined with the fact that all participants received supportive counseling, prevents strong conclusions about the efficacy of prolonged exposure therapy on PTSD in patients with alcohol dependence and PTSD.

Importantly, our findings indicated that prolonged exposure therapy was not associated with increased drinking or alcohol craving, a concern that has been voiced by some investigators. In fact, reduction in PTSD severity and drinking was evident for all 4 treatment groups. This finding contradicts the common view that trauma-focused therapy is contraindicated for individuals with alcohol dependence and PTSD because it may exacerbate PTSD symptoms and thereby lead to increased alcohol use.

Participants in this study were followed up for 6 months after treatment discontinuation. During this follow-up period, participants who received prolonged exposure therapy retained low drinking levels, whereas participants who did not receive prolonged exposure therapy had a higher relapse rate. Exploratory analyses suggest that naltrexone plus prolonged exposure therapy vs naltrexone alone, prolonged exposure therapy alone, or supportive counseling alone was associated with a lower rate of relapse of alcohol dependence, as measured by PDD (Figure 2). Further evidence that prolonged exposure therapy may reduce the rate of relapse comes from our findings of the main effect of prolonged exposure therapy on PDD during follow-up. This finding suggests that receiving prolonged exposure therapy plus naltrexone protects patients with alcohol dependence and PTSD from relapse in drinking after treatment discontinuation.

To our knowledge, this study is the first randomized trial of patients with comorbid alcohol dependence and PTSD to demonstrate significant differences in outcomes between an active treatment and a control comparison. This may be due to differences between the treatments that were used in the current study and those used in the other studies. Brady et al used sertraline for treating PTSD and cognitive behavioral therapy for treating alcohol dependence, neither of which have been found to have strong effects on the respective target disorder. Hien et al used the Seeking Safety treatment program, a type of cognitive behavioral therapy that targets substance use disorders and comorbid PTSD, which has not gained strong support for its efficacy with either disorder. Our results highlight the importance of selecting treatments with strong evidence for their efficacy with both disorders when treating patients with alcohol dependence and PTSD.

As noted above, attendance to prolonged exposure therapy sessions was low relative to our previous PTSD treatment studies. However, our previous studies excluded patients with PTSD and comorbid alcohol dependence. Low adherence to therapy has been found in other studies of patients with PTSD and sub-

Table 3. Summary of the Piecewise Growth Curve Models for Posttraumatic Stress Disorder (PTSD) Symptoms

<table>
<thead>
<tr>
<th>PTSD Symptom Severity Interview</th>
<th>Pretreatment (wk 0)</th>
<th>Posttreatment (wk 24)</th>
<th>Change Between Pretreatment and Posttreatment</th>
<th>Follow-up (wk 52)</th>
<th>Change Between Posttreatment and Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTSD exposure therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus naltrexone</td>
<td>30.3 (27.7 to 32.9)</td>
<td>12.2 (8.2 to 16.1)</td>
<td>−19.1 (−23.1 to −15.09)</td>
<td>7.9 (4.1 to 11.8)</td>
<td>−4.1 (−7.6 to −0.6)</td>
</tr>
<tr>
<td>Plus placebo</td>
<td>27.7 (24.7 to 30.8)</td>
<td>13.3 (9.3 to 17.3)</td>
<td>−16.1 (−20.8 to −11.3)</td>
<td>10.8 (6.3 to 15.2)</td>
<td>−2.5 (−6.3 to −1.3)</td>
</tr>
<tr>
<td>Supportive counseling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plus naltrexone</td>
<td>27.1 (24.7 to 30.8)</td>
<td>15.3 (12.2 to 18.3)</td>
<td>−12.40 (−15.79 to −8.97)</td>
<td>10.9 (7.2 to 14.6)</td>
<td>−4.2 (−8.1 to −0.3)</td>
</tr>
<tr>
<td>Plus placebo</td>
<td>27.5 (25.4 to 29.6)</td>
<td>15.5 (12.4 to 18.6)</td>
<td>−11.6 (−14.1 to −9.1)</td>
<td>11.1 (8.2 to 14.1)</td>
<td>−4.3 (−6.9 to −1.6)</td>
</tr>
</tbody>
</table>

*All participants received supportive counseling.*

**Note:** Pretreatment and Posttreatment and Change Between are given in terms of mean (95% CI), % of Days.
Therapy for Alcohol Dependence and PTSD

Figure 2. Mean Percentage of Days Drinking During Treatment and Follow-up

Preliminary growth curve analyses indicated that change during treatment was nonlinear and modeling time using a hyperbolic transformation of the number of weeks (time = 1 − [1/(weeks + 1)]) yielded the best fit to the data with drastic decreases in percentage of days drinking during the earlier part of treatment that flattened out over time. Error bars indicate 95% confidence intervals; PTSD, posttraumatic stress disorder.

stance use disorders. For example, Hien et al. found that only 12.2% of patients completed all 12 sessions of the Seeking Safety treatment program. The relatively low adherence to prolonged exposure therapy sessions may be explained in part by our clinical observation that participants in the study experienced multiple life difficulties (e.g., homelessness, health problems). This observation is consistent with Drapkin et al.’s findings. It is encouraging to note, however, that patients who received 6 or more sessions of prolonged exposure therapy benefited substantially from treatment, suggesting that a relatively low dose of prolonged exposure therapy is effective in this population.

Several caveats should be noted. First, because of concern for the safety of these highly impaired patients, supportive counseling was provided for all 4 treatment groups. As a result, we were unable to evaluate the separate contribution of this intervention to the overall outcome. Second, attendance to prolonged exposure therapy sessions was relatively low, therefore the efficacy of a full treatment dose of prolonged exposure therapy on PTSD and drinking behavior could not be evaluated. Future research should examine ways to increase treatment adherence in this population. Third, we relied on pill counting to assess adherence to medication; the use of more sophisticated methods may have increased the reliability of assessing adherence to medication. Fourth, medication management and prolonged exposure therapy were delivered by separate clinicians. This model may be less readily applicable in mental health community clinics or primary care settings because it requires greater logistical coordination than an integrated model in which both interventions would be delivered by the same clinician. Despite these limitations, our trial demonstrates that (1) patients with comorbid alcohol dependence and PTSD benefit from naltrexone treatment; (2) prolonged exposure therapy is not associated with exacerbation of alcohol dependence; and (3) combined treatment with naltrexone and prolonged exposure therapy may decrease the rate of relapse of alcohol dependence for up to 6 months after treatment discontinuation.

ARTICLE INFORMATION

Author Contributions: Dr Foa had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Foa, Bux, Oslin, O’Brien, Riggs, Volpicelli. Acquisition of data: Foa, Yusko, Bux, Oslin, Imms, Riggs. Analysis and interpretation of data: Foa, Yusko, McLean, Suvak, Oslin, O’Brien. Drafting of the manuscript: Foa, Yusko, McLean, Suvak, Bux, Imms. Critical revision of the manuscript for important intellectual content: Foa, Oslin, O’Brien, Riggs, Volpicelli. Statistical analysis: Suvak. Obtained funding: Foa, Bux, Oslin, O’Brien, Riggs. Administrative, technical, or material support: Foa, Yusko, Bux, O’Brien, Imms, Riggs. Study supervision: Foa, Yusko, Bux, Oslin, O’Brien, Riggs, Volpicelli.

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Foa reported receiving research funding from the Department of Defense, Department of Veterans Affairs, and National Institute of Health; and receiving income from published books on posttraumatic stress disorder treatment. Dr Suvak reported receiving travel reimbursement and fees for conducting statistical analyses from the University of Pennsylvania. Dr Bux reported receiving several institutional grants from the National Institutes of Health not related to this study; and receiving travel reimbursement from the National Institutes of Health. Dr Oslin reported receiving research funding from the Department of Veterans Affairs and the National Institutes of Health. Dr O’Brien reported receiving a grant from the National Institutes of Health; serving as a consultant to Alkermes Inc and Embra; providing expert testimony in a malpractice case in 2011; and receiving royalties for writing a textbook. Dr Riggs...
Therapy for Alcohol Dependence and PTSD

reported receiving research funding from the Department of Defense. Dr Volpicelli reported serving as a consultant to Alkermes Inc. No other disclosures were reported.

Funding/Support: This study was supported by grant R01 AA012428 from the National Institute on Alcohol Abuse and Alcoholism (primary investigator: Edna B. Foa, PhD).

Role of the Sponsor: The National Institute on Alcohol Abuse and Alcoholism had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily represent the views of National Institute on Alcohol Abuse and Alcoholism, the Department of Veterans Affairs, the Department of Defense, or any US government agency.

Additional Contributions: We thank the following people who provided prolonged exposure treatment for posttraumatic stress disorder and to those who helped supervise these therapists: Elana Yadin, PhD, Elizabeth Hembree, PhD, Sandra Capaldi, PsyD, Tracey Lynch, PhD (Department of Psychiatry, University of Pennsylvania, Philadelphia); Elvysa Kuschnir, PhD (Philadelphia VA Medical Center, Philadelphia, Pennsylvania), Shawn Cahill, PhD (University of Wisconsin, Madison), and Kelly Christman, PhD (Center for Deployment Psychology, Uniformed Services University, Bethesda, Maryland). Many thanks to the research assistants who helped conduct the day-to-day data collection activities. Special thanks to Samantha G. Farris, BA (Department of Psychology, University of Houston, Houston, Texas) for her dedication to data cleaning and preparation. We wish to extend our appreciation to Paula Schnurr, PhD (Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, Vermont), for her extremely helpful comments and suggestions on a previous version of the manuscript. None of the above-listed contributors received compensation for their work.

REFERENCES


