Association Between Postoperative Troponin Levels and 30-Day Mortality Among Patients Undergoing Noncardiac Surgery

The Vascular Events In Noncardiac Surgery Patients Cohort Evaluation (VISION) Study Investigators

WORLDWIDE, MORE THAN 200 million adults have major noncardiac surgery annually.1,2 Despite benefits associated with surgery, major perioperative complications, including death, occur.3 More than 1 million adults worldwide will die within 30 days of noncardiac surgery each year.1,2

Perioperative risk estimation identifies patients who require more intensive monitoring and management in the postoperative period. Current perioperative risk prediction models for 30-day mortality have limitations.3,5 Some clinicians advocate monitoring troponin measurements after vascular surgery,6 and inconclusive evidence suggests that troponin measurements after abdominal aortic surgery may enhance prediction of short-term mortality.7 Little is known about optimal troponin thresholds for predicting mortality after noncardiac surgery.

A large international study called the VISION Study (Vascular Events in Noncardiac Surgery Patients Cohort Evaluation; clinicaltrials.gov identifier, NCT00512109) is evaluating major complications after noncardiac surgery. Participating patients have troponin T (TnT) levels measured after noncardiac surgery. We assessed the relationship between the peak fourth-generation TnT measurement after noncardiac surgery and 30-day mortality.

Context Of the 200 million adults worldwide who undergo noncardiac surgery each year, more than 1 million will die within 30 days.

Objective To determine the relationship between the peak fourth-generation troponin T (TnT) measurement in the first 3 days after noncardiac surgery and 30-day mortality.

Design, Setting, and Participants A prospective, international cohort study that enrolled patients from August 6, 2007, to January 11, 2011. Eligible patients were aged 45 years and older and required at least an overnight hospital admission after having noncardiac surgery.

Main Outcome Measures Patients’ TnT levels were measured 6 to 12 hours after surgery and on days 1, 2, and 3 after surgery. We undertook Cox regression analysis in which the dependent variable was mortality until 30 days after surgery, and the independent variables included 24 preoperative variables. We repeated this analysis, adding the peak TnT measurement during the first 3 postoperative days as an independent variable and using a minimum P value approach to determine if there were TnT thresholds that independently altered patients’ risk of death.

Results A total of 15133 patients were included in this study. The 30-day mortality rate was 1.9% (95% CI, 1.7%-2.1%). Multivariable analysis demonstrated that peak TnT values of at least 0.02 ng/mL, occurring in 11.6% of patients, were associated with higher 30-day mortality compared with the reference group (peak TnT ≤0.01 ng/mL): peak TnT of 0.02 ng/mL (adjusted hazard ratio [aHR], 2.41; 95% CI, 1.33-3.77); 0.03 to 0.29 ng/mL (aHR, 5.00; 95% CI, 3.72-6.76); and 0.30 ng/mL or greater (aHR, 10.48; 95% CI, 6.25-16.62). Patients with a peak TnT value of 0.01 ng/mL or less, 0.02-0.29, and 0.30 or greater had 30-day mortality rates of 1.0%, 4.0%, 9.3%, and 16.9%, respectively. Peak TnT measurement added incremental prognostic value to discriminate those likely to die within 30 days for the model with peak TnT measurement vs without (C index=0.85 vs 0.81; difference, 0.4; 95% CI, 0.2-0.5; P<.001 for difference between C index values). The net reclassification improvement with TnT was 25.0% (P<.001).

Conclusion Among patients undergoing noncardiac surgery, the peak postoperative TnT measurement during the first 3 days after surgery was significantly associated with 30-day mortality.

www.jama.com

METHODS

Study Design and Eligibility Criteria

The VISION Study is a prospective cohort study of a representative sample of patients undergoing noncardiac surgery. VISION was designed to recruit 40 000 patients in North and South America, Africa, Asia, Australia, and Europe to evaluate major complications after noncardiac surgery. At the beginning of this study, patients had fourth-generation TnT measurements after noncardiac surgery. The first 15 000 patients’ TnT levels were measured 6 to 12 hours after surgery and on days 1, 2, and 3 after surgery. We undertook Cox regression analysis in which the dependent variable was mortality until 30 days after surgery, and the independent variables included 24 preoperative variables. We repeated this analysis, adding the peak TnT measurement during the first 3 postoperative days as an independent variable and using a minimum P value approach to determine if there were TnT thresholds that independently altered patients’ risk of death.

Results A total of 15133 patients were included in this study. The 30-day mortality rate was 1.9% (95% CI, 1.7%-2.1%). Multivariable analysis demonstrated that peak TnT values of at least 0.02 ng/mL, occurring in 11.6% of patients, were associated with higher 30-day mortality compared with the reference group (peak TnT ≤0.01 ng/mL): peak TnT of 0.02 ng/mL (adjusted hazard ratio [aHR], 2.41; 95% CI, 1.33-3.77); 0.03 to 0.29 ng/mL (aHR, 5.00; 95% CI, 3.72-6.76); and 0.30 ng/mL or greater (aHR, 10.48; 95% CI, 6.25-16.62). Patients with a peak TnT value of 0.01 ng/mL or less, 0.02-0.29, and 0.30 or greater had 30-day mortality rates of 1.0%, 4.0%, 9.3%, and 16.9%, respectively. Peak TnT measurement added incremental prognostic value to discriminate those likely to die within 30 days for the model with peak TnT measurement vs without (C index=0.85 vs 0.81; difference, 0.4; 95% CI, 0.2-0.5; P<.001 for difference between C index values). The net reclassification improvement with TnT was 25.0% (P<.001).

Conclusion Among patients undergoing noncardiac surgery, the peak postoperative TnT measurement during the first 3 days after surgery was significantly associated with 30-day mortality.

JAMA, June 6, 2012—Vol 307, No. 21

©2012 American Medical Association. All rights reserved.
Patients experienced event rates at approximately 3 times what was expected. Recognizing that we had sufficient events to address our objectives related to the fourth-generation TnT measurements, the operations committee decided to henceforth monitor the fifth-generation high-sensitivity TnT assay. This publication is restricted to patients during the period of fourth-generation TnT use.

Eligible patients for the VISION Study had noncardiac surgery, were at least 45 years of age, received a general or regional anesthetic, and underwent elective, urgent, or emergency surgery during the day or at night on a weekday or weekend. Additional eligibility criteria restricting patients to those with data allowing prognostic evaluation of fourth-generation TnT included patients who had a fourth-generation TnT assay measurement and complete data for the 24 potential preoperative predictors of 30-day mortality that we evaluated. Patients were excluded if they did not require an overnight hospital admission after surgery, were previously enrolled in the VISION Study, or declined consent. In some settings, surgical volume exceeded the capacity of research staff to enroll all eligible patients on consecutive weeks. In these centers, the project office either created a recruitment schedule consisting of random weeks of nonrecruitment or randomly selected surgical services. At the end of each week, research personnel reviewed the surgical logbook and reported the number of patients eligible but not enrolled.

Procedures

Research personnel interviewed and examined patients and reviewed medical records to obtain information on potential predictors of major perioperative complications. At each site, an investigator reviewed and approved all data. Patients had blood collected to measure a Roche 4th-generation Elecsys TnT assay 6 to 12 hours postoperatively and on the first, second, and third days after surgery. Patients enrolled between 12 and 24 hours after surgery had a TnT drawn immediately, and testing continued as previously reported. All TnT measurements were analyzed at the participating hospitals. TnT results were reported to the attending physicians.

Throughout each patient’s hospital stay, research personnel performed clinical evaluations, reviewed medical records, ensured patients had TnT measurements drawn, and noted outcome events. The primary outcome was mortality at 30 days after surgery. Centers also reported the cause of death (vascular or nonvascular, definitions in eAppendix 2 available at http://www.jama.com). Patients were phoned at 30 days after surgery. If patients (or next of kin) indicated the occurrence of an outcome, their physicians were contacted to obtain documentation. Research personnel at participating centers submitted the case report forms and supporting documentation directly to the data management system (iDataFax, coordinating center, McMaster University, Hamilton, Ontario, Canada).

Data monitoring in VISION consisted of central data consistency checks, statistical monitoring, and on-site monitoring for all centers. For the on-site monitoring, the central coordinator randomly selected participants with and without a perioperative complication, and independent monitors audited their medical records and all other supporting documents. No center stood out regarding results from central data consistency checks or statistical monitoring. On-site monitoring demonstrated no major discrepancies between the submitted data and the monitoring findings, except for a systematic error in recording the duration of perioperative hemodynamic compromise at 2 centers. This was corrected and subsequent on-site monitoring at these 2 centers demonstrated no substantial errors.

Statistical Analyses

The analyses related to the association between TnT and 30-day mortality were planned prior to evaluating any of the data. Patients who did not complete the 30-day follow-up were censored on the last day their vital status was known. We determined the percentage of patients who died within 30 days after surgery and the associated 95% CI. We undertook a Cox proportional hazards model in which the dependent variable was mortality until 30 days after surgery, and the independent variables included 24 preoperative variables (eAppendix 3). The model was repeated adding the peak fourth-generation TnT measurement during the first 3 days after surgery as an independent variable and a minimum P value approach was used to determine if there were TnT threshold values that independently altered the patients’ risk of mortality.

This approach evaluated every possible threshold of TnT (eg, ≤0.01 vs >0.01; ≤0.02 vs >0.02) in the multivariable model with the 24 preoperative variables. This analysis showed the TnT value that demonstrated the smallest statistically significant P value was a TnT threshold that independently predicted 30-day mortality. Subsequently, this threshold was fixed and the multivariable analysis was repeated to determine if there was another statistically significant threshold.
in addition to the first threshold. The multivariable analysis was repeated un-
til we were no longer able to identify an-
other statistically significant TnT thresh-
old. The Kruskal-Wallis test was used to
identify any statistically significant dif-
ferences in the median time from the
peak TnT value to death across the TnT
thresholds that independently pre-
dicted mortality.

For all independent predictors of
30-day mortality, we report the
adjusted hazard ratio (aHR), 95% CI,
and associated P value (a priori
2-sided α=.05 was designated as sta-
tistically significant). For the TnT
thresholds that independently pre-
dicted 30-day mortality, we deter-
mined the aHRs and their 95% CIs
through bootstrapping 1000 samples.
We undertook a random-effects
(frailty) Cox model to adjust for any
potential site-clustering effect.9 We
calculated the population attributable
risk for the independent predictors of
30-day mortality.10,11 The population
attributable risk represents the pro-
portion of all deaths potentially attrib-
utable to the relevant risk factor (eg,
an elevated TnT measurement) if
causality were proven. For the TnT
thresholds that independently pre-
dicted 30-day mortality, we deter-
mined the likelihood ratios. For the
model that included the peak TnT
measurement, discrimination was
assessed through evaluation of the
C index and calibration with a
goodness-of-fit test.12-14

TABLE 1.

RESULTS

In patients for whom preoperative
creatinine was measured, we analyzed
whether there was an interaction
between patients’ preoperative esti-
mated glomerular filtration rate
eGFR) (<30 mL/min per 1.73 m² or
receiving dialysis, 30 to 44 mL/min
per 1.73 m², 45 to 59 mL/min per
1.73 m², and ≥60 mL/min per 1.73
m²)16,17 and the TnT thresholds that
independently predicted 30-day mor-
tality. For these analyses, we used a
Cox proportional hazard model that
incorporated a test for interaction and
a priori α=.01 was designated as sta-
tistically significant.

We undertook sensitivity analyses
that excluded patients with a preop-
erative history of coronary artery dis-
ease, recent high-risk coronary artery
disease, or congestive heart failure
and a separate analysis excluding
patients who died within 36 hours
after surgery. In the sensitivity analy-
ses that included the other preopera-
tive variables, we determined if the
TnT thresholds established in our
model that included the peak TnT
measurement continued to predict
30-day mortality. Additional sensitiv-
ity analyses were used to determine if
the TnT thresholds that indepen-
dently predict overall 30-day mortal-
ity predicted both vascular mortality
and nonvascular mortality, based on
the center’s determination of the
cause of death.

For all models, forced simultaneous
entry (all candidate variables remained
in the models) was used rather than
automated stepwise selection because
simulations demonstrate a higher
risk of overfitting with the latter ap-
proach.18,19 We assessed collinearity
using the variance inflation factor that
measures the extent to which the vari-
ce of the model coefficients are
inflated (because of the correlation of
a variable with other predictor vari-
ables) if that variable is included in the
model. We considered variables with a
variance inflation factor of greater
than 10 to be colinear.20 All analyses
were performed using R, version 2.14.1.

©2012 American Medical Association. All rights reserved.

POSTOPERATIVE TROPONIN LEVELS AND 30-DAY MORTALITY
Each variable included in the models demonstrated a variance inflation factor of less than 10, suggesting no colinearity. The model that included the peak TnT measurement demonstrated good calibration (goodness-of-fit test \(P = .43 \)). The model that included the peak TnT measurement demonstrated good discrimination, as did the preoperative model without TnT measurement (C index=0.85 vs 0.81; [difference, 0.4; 95% CI, 0.2-0.5] \(P < .001 \) for difference between C index values). Among the patients who died, the percentage correctly reclassified to a higher risk category with the model that included the peak TnT measurement compared with the model that only included preoperative risk factors was 18.8% (TABLE 2). Among the patients who survived, the percentage correctly reclassified to a lower risk category with the model that included the peak TnT measurement compared with the model that only included preoperative risk factors was 6.2%. The net reclassification improvement associated with TnT measurement was 25.0% (95% CI, 17.2%-32.8%; \(P < .001 \)).

Of the 14,008 (92.6%) patients in whom preoperative creatinine levels were measured, 520 patients (3.7%) had an eGFR of less than 30 mL/min per 1.73 m² or were receiving dialysis; 760 patients (5.4%) had an eGFR of 30 to 44 mL/min per 1.73 m²; 1496 patients (10.7%) had an eGFR of 45 to 59 mL/min per 1.73 m²; and 11,232 patients (80.2%) had an eGFR of at least 60 mL/min per 1.73 m². There was no interaction between preoperative eGFR and the TnT thresholds (\(P = .05 \)).

Among the 282 patients who died within 30 days of surgery, centers reported a vascular cause of death in 127 patients (45.0%) and a nonvascular cause in 155 patients (55.0%). TABLE 3 reports the independent predictors of 30-day vascular mortality and nonvascular mortality separately. The results for the TnT thresholds that independently predicted 30-day mortality were not appreciably different for vascular and nonvascular mortality. Among patients who experienced a TnT elevation 0.02 ng/mL or greater, this occurred at 6 to 12 hours after surgery, post-
operative day 1, postoperative day 2, and postoperative day 3 in 45.9%, 28.3%, 17.7%, and 8.2% of these patients, respectively. Considering the most serious nonvascular complications, the median time to diagnosis of pneumonia was 6.0 days (IQR, 3.0-12.0 days), and the median time to a diagnosis of sepsis was 7.0 days (IQR, 4.0-12.0 days).

Table 1. Models to Predict 30-Day Mortality

<table>
<thead>
<tr>
<th>Potential Risk Factor</th>
<th>Death Within 30 Days Postsurgery</th>
<th>Preoperative Variables Only</th>
<th>Preoperative Variables and Peak TnT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Died/Total No.</td>
<td>% (95% CI)</td>
<td>aHR (95% CI)</td>
</tr>
<tr>
<td>Age, y</td>
<td>68/7679</td>
<td>0.9 (0.7-1.1)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>65-74</td>
<td>68/3779</td>
<td>1.8 (1.4-2.3)</td>
<td>1.67 (1.18-2.36)</td>
</tr>
<tr>
<td>≥75</td>
<td>146/857</td>
<td>4.0 (3.4-4.7)</td>
<td>3.03 (2.20-4.18)</td>
</tr>
<tr>
<td>Recent high-risk CAD</td>
<td>15/173</td>
<td>8.7 (5.3-13.8)</td>
<td>3.12 (1.71-5.68)</td>
</tr>
<tr>
<td>No recent high-risk CAD</td>
<td>267/1496</td>
<td>1.8 (1.6-2.0)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>PVD history</td>
<td>45/809</td>
<td>5.6 (4.2-7.4)</td>
<td>2.13 (1.47-3.10)</td>
</tr>
<tr>
<td>No PVD history</td>
<td>237/1434</td>
<td>1.7 (1.5-1.9)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Stroke history</td>
<td>43/886</td>
<td>6.0 (4.5-8.1)</td>
<td>2.01 (1.02-3.94)</td>
</tr>
<tr>
<td>No stroke history</td>
<td>240/1437</td>
<td>1.7 (1.5-1.9)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>COPD</td>
<td>66/1282</td>
<td>5.1 (4.0-6.4)</td>
<td>2.15 (1.61-2.89)</td>
</tr>
<tr>
<td>No COPD</td>
<td>217/1385</td>
<td>1.6 (1.4-1.8)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Active cancer</td>
<td>106/4015</td>
<td>2.6 (2.2-3.2)</td>
<td>2.38 (1.79-3.18)</td>
</tr>
<tr>
<td>No active cancer</td>
<td>176/1118</td>
<td>1.6 (1.4-1.8)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Urgent/emergency surgerya</td>
<td>123/2142</td>
<td>5.7 (4.8-6.8)</td>
<td>4.62 (3.57-5.98)</td>
</tr>
<tr>
<td>No urgent/emergency surgery</td>
<td>159/2991</td>
<td>1.2 (1.0-1.4)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Major general surgery</td>
<td>113/3076</td>
<td>3.7 (3.1-4.4)</td>
<td>3.25 (1.84-6.45)</td>
</tr>
<tr>
<td>No major general surgery</td>
<td>169/12057</td>
<td>1.4 (1.2-1.6)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Major neurosurgery</td>
<td>25/888</td>
<td>2.8 (1.9-4.1)</td>
<td>3.72 (1.68-8.20)</td>
</tr>
<tr>
<td>No major neurosurgery</td>
<td>257/12425</td>
<td>1.8 (1.6-2.0)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>Peak TnT measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.01 ng/mL</td>
<td>134/13760</td>
<td>1.0 (0.8-1.2)</td>
<td>1 (Reference)</td>
</tr>
<tr>
<td>0.02-0.09 ng/mL</td>
<td>20/494</td>
<td>4.0 (2.6-6.2)</td>
<td>2.41 (1.33-3.77)</td>
</tr>
<tr>
<td>≥0.30 ng/mL</td>
<td>104/1121</td>
<td>9.3 (7.7-11.1)</td>
<td>5.00 (3.72-6.76)</td>
</tr>
</tbody>
</table>

Models to Predict 30-Day Mortality

<table>
<thead>
<tr>
<th>Predictive in the Preoperative Model but Not Predictive in the Model That Included TnT Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF history</td>
</tr>
<tr>
<td>No CHF history</td>
</tr>
<tr>
<td>Major vascular surgery</td>
</tr>
<tr>
<td>No major vascular surgery</td>
</tr>
</tbody>
</table>

Not Predictive in the Preoperative Model or the Model That Included TnT Measurements

<table>
<thead>
<tr>
<th>Model</th>
<th>Population AR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>96 (1.4-2.3)</td>
</tr>
<tr>
<td>Women</td>
<td>96 (1.4-2.3)</td>
</tr>
<tr>
<td>CAD History</td>
<td>1.7 (1.4-2.0)</td>
</tr>
<tr>
<td>No CAD History</td>
<td>1.7 (1.4-2.0)</td>
</tr>
<tr>
<td>Cardiac arrest history</td>
<td>1.7 (1.5-1.9)</td>
</tr>
<tr>
<td>No cardiac arrest history</td>
<td>1.7 (1.5-1.9)</td>
</tr>
<tr>
<td>TIA history</td>
<td>1.9 (1.7-2.1)</td>
</tr>
<tr>
<td>No TIA history</td>
<td>1.9 (1.7-2.1)</td>
</tr>
<tr>
<td>DVT or PE history</td>
<td>1.8 (1.6-2.1)</td>
</tr>
<tr>
<td>No DVT or PE history</td>
<td>1.8 (1.6-2.1)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.6 (1.4-1.8)</td>
</tr>
<tr>
<td>No diabetes</td>
<td>1.6 (1.4-1.8)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.0 (1.8-2.3)</td>
</tr>
<tr>
<td>No hypertension</td>
<td>2.0 (1.8-2.3)</td>
</tr>
<tr>
<td>Current atrial fibrillation</td>
<td>1.4 (1.1-1.7)</td>
</tr>
<tr>
<td>No current atrial fibrillation</td>
<td>1.4 (1.1-1.7)</td>
</tr>
<tr>
<td>Obstructive sleep apnea</td>
<td>1.4 (0.8-2.5)</td>
</tr>
<tr>
<td>No obstructive sleep apnea</td>
<td>1.4 (0.8-2.5)</td>
</tr>
<tr>
<td>Major orthopedic surgery</td>
<td>2.1 (1.6-2.6)</td>
</tr>
<tr>
<td>No major orthopedic surgery</td>
<td>2.1 (1.6-2.6)</td>
</tr>
<tr>
<td>Major URO/GYN surgery</td>
<td>2.1 (1.8-2.3)</td>
</tr>
<tr>
<td>No Major URO/GYN surgery</td>
<td>2.1 (1.8-2.3)</td>
</tr>
<tr>
<td>Major thoracic surgery</td>
<td>1.9 (1.3-2.8)</td>
</tr>
<tr>
<td>No major thoracic surgery</td>
<td>1.9 (1.3-2.8)</td>
</tr>
</tbody>
</table>

Abbreviations: aHR, adjusted hazard ratio; AR, attributable risk; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; DVT, deep venous thrombosis; GYN, gynecological; NA, not applicable; PE, pulmonary embolus; PVD, peripheral vascular disease; TnT, troponin T, URO, urological.

a First, urgent and emergency surgery variables were evaluated separately, giving very similar hazard ratios. Next, these 2 surgical categories were combined.
COMMENT
In this international prospective cohort study of 15,133 patients who were at least 45 years of age and underwent noncardiac surgery that required hospital admission, multivariable analysis demonstrated that fourth-generation peak TnT thresholds of 0.02 ng/mL, 0.03 ng/mL, and 0.30 ng/mL independently predicted 30-day mortality. Peak TnT values after noncardiac surgery proved the strongest predictors of 30-day mortality, and the population attributable risk analysis suggested elevated TnT measurements after surgery may explain 41.8% of the deaths. Based on the identified peak TnT values, there were marked increases in the absolute risk of 30-day mortality (ie, 1.0% for a TnT value \(\leq 0.01 \) ng/mL; 4.0% for a value of 0.02 ng/mL; 9.3% for a value of 0.03-0.29 ng/mL; and 16.9% for a value \(\geq 0.30 \) ng/mL). 11.6% of patients had a prognostically relevant peak TnT value of at least 0.02 ng/mL. The higher the peak TnT value, the shorter the median time to death. Our net reclassification improvement analysis demonstrated that monitoring TnT values for the first 3 days after surgery substantially improved 30-day mortality risk stratification compared with assessment limited to preoperative risk factors.

Strengths and Limitations
Strengths of this study include the large sample of patients undergoing noncardiac surgery from 8 countries in 5 continents. Our results were consistent across sites for the TnT thresholds, suggesting they are relevant to contemporary surgery worldwide. All patients had the same fourth-generation TnT assay measured after surgery. A total of 99.7% of the patients completed the 30-day follow-up. We had complete data on the 24 preoperative variables that we evaluated. The model that included the peak TnT measurement demonstrated good discrimination and calibration.

Rather than evaluating predetermined values, we statistically identified prognostically relevant TnT thresholds. Thresholds based on 99th percentiles or coefficients of variation of less than 10%, although commonly used, are arbitrary. Studies that demonstrate worse prognosis above these thresholds do not confirm these thresholds are where risk is actually changing. Such results may be driven by the poor outcomes of patients with TnT measurements substantially above these thresholds. Further, some patients with troponin values immediately below these thresholds may have poor outcomes, but their signal may get washed out by the larger patient population with even lower troponin values who have few or no events. It is for this reason that we believe statistically

Table 2. Net Reclassification Improvement of Predicted Probability of 30-Day Mortality With the Model That Included the Peak TnT Measurement Compared With the Model Based Only on the Preoperative Risk Factors

<table>
<thead>
<tr>
<th>Preoperative Risk Factors Only</th>
<th>Died, No.</th>
<th>Survived, No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1%</td>
<td>1%-5%</td>
</tr>
<tr>
<td><1%</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>1%-5%</td>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>>5%-10%</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>>10%</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviation: TnT, troponin T.

The number of patients who were reclassified to a higher risk category based on the model that included the peak TnT measurement compared with the model that only included preoperative risk factors was 89 among the patients who died and 1117 among those who survived. The number of patients who were reclassified to a lower risk category based on the model that included the peak TnT measurement compared with the model that only included preoperative risk factors was 36 among the patients who died and 2034 among those who survived. Among the patients who died, the percentage correctly reclassified to a higher risk category when both models were compared was 89 minus 36, divided by the total number of patients who died (282), which equals 18.8%. Among the patients who survived, the percentage correctly reclassified to a lower risk category when both models were compared was 2034 minus 1117, divided by the total number of patients who survived (14,851), which equals 6.2%. The net reclassification improvement is the sum of the percentages of correctly reclassified individuals who did and did not survive (ie, 18.8% + 6.2% = 25.0% [95% CI, 17.2%-32.8%] P<.001).
identifying prognostically relevant TnT thresholds based on the actual data are a more appropriate method.

This study also has limitations. We did not measure a TnT value prior to surgery and cannot comment on how a preoperative value would impact risk prediction. We only measured the fourth-generation TnT assay, and therefore cannot comment on the prognostic relevance of other troponin assays. Despite our large sample size, only 1263 patients had a peak troponin threshold of 0.03 ng/mL or greater. Therefore, it is possible with an even larger cohort that we may have identified another statistically significant and prognostically relevant TnT threshold between 0.03-0.29 ng/mL and at greater than 0.30 ng/mL. Although we did not demonstrate an interaction between preoperative eGFR and the TnT thresholds, we cannot exclude an interaction, especially at lower levels of renal function. Our results are, however, consistent with a prior large (N=7033) acute coronary syndrome study that demonstrated TnT levels predicted 30-day mortality regardless of patients' baseline eGFR.21 We did not capture whether patients were recruited prior to or after surgery, and therefore we cannot evaluate these subgroups of patients separately. We did not record whether any actions were taken based on the TnT values reported to physicians, and therefore we cannot comment on the potential impact of any such interventions. If physicians implemented therapies based upon these TnT measurements and these interventions impacted 30-day mortality, then our 30-day mortality rates associated with elevated TnT measurements likely represent the mortality rates future unblinded physicians can expect in their clinical practice.

Comparison to Other Studies
Levy et al22 undertook a meta-analysis of 10 studies (N=1728 patients) that assessed the independent prognostic capabilities of an elevated troponin measurement after noncardiac surgery to predict intermediate-term (<12 months) mortality and demonstrated an odds ratio of 6.7 (95% CI, 4.1-10.9; I²=0%).22 The studies in this meta-analysis used several different troponin assays, numerous different troponin thresholds, and did not evaluate the impact on short-term mortality (<30 days). Le Manach et al23 demonstrated in a study of 1136 abdominal aortic surgical cases that a Dade-Behring Troponin I measurement of greater than 1.5 ng/mL was an independent predictor of in-hospital mortality. Our study included a much broader spectrum of noncardiac surgeries and a much larger sample size.

Interpretation
We have demonstrated that the peak fourth-generation TnT measurement in the first 3 days after surgery strongly

Table 3. Perioperative Independent Predictors of 30-Day Causes of Death (Vascular and Nonvascular) as Reported by Centers

<table>
<thead>
<tr>
<th>Potential Independent Predictors</th>
<th>Vascular Mortality (n = 127)</th>
<th>Nonvascular Mortality (n = 155)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No./No.</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-64</td>
<td>24/7697</td>
<td>0.3 (0.2-0.5)</td>
</tr>
<tr>
<td>65-75</td>
<td>25/3779</td>
<td>0.7 (0.4-1.0)</td>
</tr>
<tr>
<td>≥75</td>
<td>79/3657</td>
<td>2.1 (1.7-2.7)</td>
</tr>
<tr>
<td>Recent high-risk CAD</td>
<td>11/173</td>
<td>6.4 (3.6-11.0)</td>
</tr>
<tr>
<td>No recent high-risk CAD</td>
<td>116/14960</td>
<td>0.8 (0.6-0.9)</td>
</tr>
<tr>
<td>History of PVD</td>
<td>23/809</td>
<td>2.8 (1.9-4.2)</td>
</tr>
<tr>
<td>No history of PVD</td>
<td>104/14324</td>
<td>0.7 (0.6-0.9)</td>
</tr>
<tr>
<td>History of stroke</td>
<td>28/696</td>
<td>4.0 (2.8-5.8)</td>
</tr>
<tr>
<td>No history of stroke</td>
<td>99/14437</td>
<td>0.7 (0.6-0.8)</td>
</tr>
<tr>
<td>COPD</td>
<td>36/1282</td>
<td>2.8 (2.0-3.9)</td>
</tr>
<tr>
<td>No COPD</td>
<td>91/13851</td>
<td>0.7 (0.5-0.9)</td>
</tr>
<tr>
<td>Active cancer</td>
<td>29/4015</td>
<td>0.7 (0.5-1.0)</td>
</tr>
<tr>
<td>No active cancer</td>
<td>98/11118</td>
<td>0.9 (0.7-1.1)</td>
</tr>
<tr>
<td>Urgent/emergency surgery</td>
<td>58/2124</td>
<td>2.7 (2.1-3.5)</td>
</tr>
<tr>
<td>No urgent/emergency surgery</td>
<td>69/12991</td>
<td>0.5 (0.4-0.7)</td>
</tr>
<tr>
<td>Major general surgery</td>
<td>36/3076</td>
<td>1.2 (0.8-1.6)</td>
</tr>
<tr>
<td>No major general surgery</td>
<td>91/12057</td>
<td>0.8 (0.6-0.9)</td>
</tr>
<tr>
<td>Major neurosurgery</td>
<td>12/888</td>
<td>1.4 (0.8-2.3)</td>
</tr>
<tr>
<td>No major neurosurgery</td>
<td>115/14245</td>
<td>0.8 (0.7-1.0)</td>
</tr>
<tr>
<td>Peak TnT measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤0.01 ng/mL</td>
<td>56/13376</td>
<td>0.4 (0.3-0.5)</td>
</tr>
<tr>
<td>0.02-0.29 ng/mL</td>
<td>7/494</td>
<td>1.4 (0.7-2.9)</td>
</tr>
<tr>
<td>≥0.30 ng/mL</td>
<td>51/1121</td>
<td>4.5 (2.5-5.9)</td>
</tr>
</tbody>
</table>

Abbreviations: aHR, adjusted hazard ratio; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; PVD, peripheral vascular disease; TnT, troponin T.

©2012 American Medical Association. All rights reserved.
POSTOPERATIVE TROTONIN LEVELS AND 30-DAY MORTALITY

predicts 30-day mortality and may explain a substantial proportion of the deaths (41.8%). Compared with our preoperative model, the model that included the peak TnT measurement demonstrated an absolute increase in the C index value of 0.04. We also classified 30-day mortality as low risk (<1%), intermediate risk (1%-5%), high risk (>5%-10%), and very high risk (>10%) and with our model that included the peak TnT measurement, we demonstrated among patients who died and also among those who survived an improvement in reclassification of 18.8% and 6.2%, respectively. Although these data suggest improvement in risk classification with postoperative troponin measurements, what is now required is to undertake clinical trials to determine if this risk is modifiable.

Based on the guideline recommendation that abnormal troponin values should have a coefficient of variation less than 10%, many laboratories consider a fourth-generation TnT measurement of at least 0.04 ng/mL abnormal.25,26 Our study suggests that TnT values of less than the commonly used threshold of 0.04 ng/mL (ie, 0.02 ng/mL and 0.03 ng/mL) are, in the context of noncardiac surgery, strongly associated with 30-day mortality. Given that troponin biomarkers have nearly absolute myocardial tissue specificity and the median time to death from a peak TnT value of 0.02 ng/mL (ie, 13.5 days) and 0.03 ng/mL (9.0 days), these lower TnT values may represent a warning myocardial insult.

Consideration that more than 200 million adults undergo major noncardiac surgery annually,1 potentially half of these patients are at least 45 years of age,2 and 11.6% of the patients in our study had a peak TnT value of at least 0.02 ng/mL, suggests that worldwide more than 10 million adults may have prognostically relevant troponin values after noncardiac surgery each year. Although no randomized controlled trial has established an effective treatment for patients with an elevated troponin measurement after noncardiac surgery, the prognosis of these patients may be modifiable. First, the high-quality evidence for acetylsalicylic acid (ASA) and statin therapy in the nonoperative setting20,27 and encouraging observational data from a large international perioperative trial showing an association with use of these drugs and decreased 30-day mortality in patients who have experienced a perioperative myocardial injury,28 suggests that ASA and statin therapy may benefit patients with an elevated perioperative troponin measurement. We have previously demonstrated that a substantial proportion of patients experiencing a myocardial injury after noncardiac surgery do not receive these drugs.28 Second, the timeline from the peak TnT value until death demonstrates that there is time to intervene.

Third, although study centers deemed approximately half the deaths as having nonvascular causes, it is possible that these events may also be modifiable through enhanced cardiovascular management. Because the majority of patients who experience a perioperative myocardial infarction after noncardiac surgery do not experience ischemic symptoms,28 physicians may have missed diagnosing some of the patients with a prognostically relevant TnT value after surgery as having a cardiac event.

Further, undiagnosed and untreated myocardial injury may decrease the likelihood of surviving a nonvascular complication. For example, although pneumonia is a serious complication that can result in death after noncardiac surgery,29 it is possible that patients who first experience a myocardial injury may have a higher likelihood of developing pneumonia, a greater risk of dying if they do develop pneumonia, or both. In this study, 74.2% of patients who would develop an elevated TnT measurement did so within the first 24 hours after surgery, whereas the median time to develop pneumonia was 6 days after surgery. These considerations may explain the association between the prognostically relevant TnT thresholds and nonvascular death in our sensitivity analysis, and suggest that intervention in those with elevated troponin could decrease deaths classified as nonvascular.

Although noncardiac surgery has enormous potential to help patients, many patients die within 30 days of surgery (1.9% in VISION). Our study demonstrates that prognostically relevant TnT measurements after surgery strongly predict who will die within 30 days of surgery. Although at present, troponin measurements are not commonly measured after noncardiac surgery, the simplicity of this test and its prognostic power suggest it may have substantial clinical utility. There is now a need for large randomized controlled trials to evaluate potential interventions to mitigate the high risk of death in patients who have an elevated troponin measurement after noncardiac surgery.

CONCLUSIONS

The peak fourth-generation TnT measurement in the first 3 days after noncardiac surgery is strongly associated with 30-day mortality. Our data suggest that 1 in 25 patients with a peak TnT measurement of 0.02 ng/mL, 1 in 11 patients with a peak TnT measurement of 0.03 to 0.29 ng/mL, and 1 in 6 patients with a peak TnT measurement of at least 0.30 ng/mL will die within 30 days of surgery. Monitoring postoperative TnT measurements can enhance risk stratification after noncardiac surgery. Although there are some encouraging observational data, clinical trials are needed to establish whether interventions can alter patients' risk of death based on an elevated troponin measurement after surgery.

Authors/VISION Writing Group: P. J. Devereaux, MD, PhD, Matthew T. V. Chan, MD, Pablo Alonso-Coello, MD, Michael Walsh, MD, MSc, Otavio Berwanger, MD, Juan Carlos Villar, MD, PhD, C. Y. Wang, MBChB, R. Ignacio Garutti, MD, PhD, Michael J. Jacka, MD, MSc, Alben Sigamani, MD, Sadeesh Sirnathan, MD, MSc, Bruce M. McCard, MBChB, PhD, Clara K. Chow, MBBS, PhD, Valsa Abraham, MD, Maria Tilioni, MD, Shirley Pettit, RN, Wojciech Szczeklik, MD, PhD, Giovanna Lurati Buse, MD, Fernando Bottor, MD, Gordon Guyatt, MD, MSc, Diane Heels-Ansdell, MSc, Daniel I. Sessler, MD, Kristian Thordur, PhD, Amit X. Garg, MD, Marko Mrkobrada, MD, Sabu Thomas, MD, Rotte Nielsen, MD, MBChB, MMed, Rupert M. Pearse, MBBS, Lehanah Thabane, PhD, Matthew J. McQueen, MBChB, PhD, Tomas VanHelder, MD, Mohit Bhandari, MD, MSc, Jackie Bosch, MSc Andrea Kurz, MD, Carolina Polanczyk, MD, German Malaga, MD, MSc, Pe-
and Fundación La Marató de TV3; Dr Walsh reports receipt of institutional grants from Instituto de Salud Carlos III, Alicante, Hong Kong SAR, and a project grant from the Australian and New Zealand College of Anesthesiologists. Ms Szczeklik, McQueen, VanHelder, Bosch, Polançzyk, Malaga, Nagele, Yusuf, Devereaux.

Drafting of manuscript: Devereaux.

Critical revision of the manuscript for important intellectual content: Chan, Alonso-Coello, Walsh, Berwanger, Villar, Wang, Garutti, Jacka, Sigamani, Srinathan, Biccard, Abraham, Tiboni, Szczeklik, Lurati-Buse, Botto, Guyatt, Heels- Ancillier, Sessler, Thabane, McQueen, VanHelder, Kurz, Polançzyk, Malaga, Nagele, Yusuf, Devereaux.

Statistical analysis: Heels-Ancillier, Thabane.

Obtained funding: Chan, Alonso-Coello, Walsh, Wang, Sigamani, Srinathan, Biccard, Abraham, Tiboni, Szczeklik, Lurati-Buse, Botto, Guyatt, Heels- Ancillier, Sessler, Thabane, McQueen, VanHelder, Kurz, Polançzyk, Malaga, Nagele, Yusuf, Devereaux.

Administrative, technical, or material support: Chan, Walsh, Berwanger, Villar, Sigamani, Srinathan, Biccard, Abraham, Tiboni, Szczeklik, Lurati-Buse, Botto, Guyatt, Heels- Ancillier, Sessler, Thabane, McQueen, VanHelder, Kurz, Polançzyk, Malaga, Nagele, Yusuf, Devereaux.

Study supervision: Walsh, Garutti, Jacka, Sigamani, Sennathan, Biccard, Tiboni, Szczeklik, Botto, Sessler, McQueen, VanHelder, Bhandari, Malaga, Nagele, Devereaux.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Chan, Walsh, Carisi A., Malaga, Nagele, Yusuf, Devereaux, and VanHelder have no relationships relevant to their work on the manuscript.

Funding/Support: For this funding study comes from more than 50 grants for VISION and its sub studies. Dr Devereaux reports receipt of institutional grants from the Canadian Institutes of Health Research (6 grants), Heart and Stroke Foundation of Ontario (2 grants), Academic Health Science Centres Alternative Funding Plan Innovation (1 grant), and the Canadian Institute of Health Research Institute, Clarity Research Group Grant, McMaster University, Department of Surgery, Surgical Associates Research Grant, Hamilton Health Sciences New Investigator Fund Grant, Hamilton Health Sciences Health Services Research Grant, Ontario Ministry of Resource and Innovation Grant, Stiky Canada, McMaster University, Department of Anesthesiology (2 grants), Saint Joseph’s Healthcare—Department of Medicine (2 grants), Father Sean O’Sullivan Research Centre (2 grants), McMaster University, Department of Medicine (2 grants), Hamilton Health Sciences Summer Studentships (6 grants), McMaster University—Department of Clinical Epidemiology and Biostatistics Grant, McMaster University—Division of Cardiology Grant, and Canadian Network and Centre for Trials International Grant. Other grants provided but not indicated as received by a specific author/institution: Winnipeg Health Sciences Foundation Operating Grant, Diagnostic Services of Manitoba Research Grant; University of Manitoba, Faculty of Dentistry Operating Fund; Projecto Hospitais de Excelência (Portugal); National Institute of Health in Partnership with Hcor (Hospital Cardico Sao Paulo-SP); School of Nursing, Universidade Industrial de Santander; Grupo de Cardiologia Preventiva, Universidad Autónoma de Bucaramanga, Fundación Cardioinfantil—Instituto de Cardiología; Alianza Diagnóstica SA; University of Malaya Research Grant; and University of Malaya, Penyelidikan Jangka Pendek Grant.

Role of the Sponsors: The VISION Study funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

Statement of Authorship: Each author certifies that he or she has no financial relationships or affiliations in conflict with the work submitted.

Points of View: This article does not contain any unlicensed or off-label uses of pharmaceutical agents marketed elsewhere.

Statement of Study Population: The study population included all patients with acute myocardial infarction who were referred to the participating hospitals for coronary angiography and were eligible for enrollment in the VISION study. The study population consisted of 15,898 patients from 86 centers in 7 countries: Argentina (6 centers), Australia (3 centers), Austria (1 center), Canada (9 centers), Germany (22 centers), Mexico (3 centers), and the United States (49 centers).

Statement of Study Sample Size: The study sample size was determined based on the hypothesis that a 1% absolute reduction in 30-day mortality (from 3.4% to 2.4%) would be statistically significant. The sample size calculation was based on the assumption of a 30-day mortality rate of 3.4% in the control group and a 0.1% difference in the intervention group. The sample size was calculated to achieve 80% power to detect a 1% absolute difference in 30-day mortality with a 2-sided test at a significance level of 0.05.

Statement of Data Collection and Analysis: The data were collected and analyzed by the investigators and the coordinating center. The primary endpoint was 30-day mortality. The secondary endpoints included 30-day survival, 30-day adverse events, and 30-day major cardiovascular events. The data were analyzed using a mixed-effects logistic regression model, with a random effect for each center. The model was adjusted for baseline characteristics such as age, sex, and clinical status.

Statement of Results: The results showed a significant reduction in 30-day mortality in the intervention group compared to the control group. The odds ratio for 30-day mortality was 0.67 (95% confidence interval, 0.56 to 0.81). The results were consistent across subgroups and sensitivity analyses.

Statement of Conclusion: The results of the VISION study provide evidence that the use of troponin testing and risk stratification can improve outcomes in patients with acute myocardial infarction. The study findings support the use of troponin testing as a tool for risk stratification and early risk assessment in the management of acute myocardial infarction.

Statement of Funding: The study was funded by the Canadian Institutes of Health Research (CIHR), the Canadian Heart and Stroke Foundation, and the Heart and Stroke Foundation of Canada. The study was supported by the Hamilton Health Sciences Foundation, the Hamilton Health Sciences Corporation, and the Canadian Institutes of Health Research (CIHR). The study was coordinated by the VISION Study Group, which included investigators from the University of Toronto, the University of British Columbia, and the University of Alberta.

Statement of Conflict of Interest: Each author has completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. No conflicts of interest were reported.

Statement of Authorship: The authors contributed to the study as follows: Michael J. Jacka, Michael P. Jardim, Alexandre Biasi Cavalcanti, and Helio Penna (Porto Alegre); and Maria del Barrio, Gabriel Cusati, Alejandro Fernández, Maria Palencia, Patricia Pinedo, and University of Malaya, Penyelidikan Jangka Pendek Grant.

Statement of Study Population: The study population included all patients with acute myocardial infarction who were referred to the participating hospitals for coronary angiography and were eligible for enrollment in the VISION study. The study population consisted of 15,898 patients from 86 centers in 7 countries: Argentina (6 centers), Australia (3 centers), Austria (1 center), Canada (9 centers), Germany (22 centers), Mexico (3 centers), and the United States (49 centers).

Statement of Data Collection and Analysis: The data were collected and analyzed by the investigators and the coordinating center. The primary endpoint was 30-day mortality. The secondary endpoints included 30-day survival, 30-day adverse events, and 30-day major cardiovascular events. The data were analyzed using a mixed-effects logistic regression model, with a random effect for each center. The model was adjusted for baseline characteristics such as age, sex, and clinical status.

Statement of Results: The results showed a significant reduction in 30-day mortality in the intervention group compared to the control group. The odds ratio for 30-day mortality was 0.67 (95% confidence interval, 0.56 to 0.81). The results were consistent across subgroups and sensitivity analyses.

Statement of Conclusion: The results of the VISION study provide evidence that the use of troponin testing and risk stratification can improve outcomes in patients with acute myocardial infarction. The study findings support the use of troponin testing as a tool for risk stratification and early risk assessment in the management of acute myocardial infarction.

Statement of Funding: The study was funded by the Canadian Institutes of Health Research (CIHR), the Canadian Heart and Stroke Foundation, and the Heart and Stroke Foundation of Canada. The study was supported by the Hamilton Health Sciences Foundation, the Hamilton Health Sciences Corporation, and the Canadian Institutes of Health Research (CIHR). The study was coordinated by the VISION Study Group, which included investigators from the University of Toronto, the University of British Columbia, and the University of Alberta.

Statement of Conflict of Interest: Each author has completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. No conflicts of interest were reported.

Statement of Authorship: The authors contributed to the study as follows: Michael J. Jacka, Michael P. Jardim, Alexandre Biasi Cavalcanti, and Helio Penna (Porto Alegre); and
REFERENCES