Immunogenicity and Tolerability of Recombinant Serogroup B Meningococcal Vaccine Administered With or Without Routine Infant Vaccinations According to Different Immunization Schedules
A Randomized Controlled Trial

Nicoletta Gossger, MD
Matthew D. Snape, MD, FRCPCH
Ly-Mee Yu, MSc
Adam Finn, PhD, FRCP
Gianni Bona, MD
Susanna Esposito, MD
Nicola Principi, MD
Javier Diez-Domingo, MD, PhD
Etienne Sokal, MD, PhD
Birgitta Becker, MD
Dorothee Kieninger, MD
Roman Prymula, MD, PhD
Peter Dull, MD
Ellen Ypma, MSc
Daniela Toneatto, MD
Alan Kimura, MD, PhD
Andrew J. Pollard, PhD, FRCPCH
for the European MenB Vaccine Study Group

Context In the absence of an effective vaccine, serogroup B Neisseria meningitidis (MenB) remains a major cause of invasive disease in early childhood in developed countries.

Objective To determine the immunogenicity and reactogenicity of a multicomponent MenB vaccine (4CMenB) and routine infant vaccines when given either concomitantly or separately.

Design, Setting, and Participants Phase 2b, multicenter, open-label, parallel-group, randomized controlled study of 1885 infants enrolled at age 2 months from August 2008 to July 2010 in Europe.

Intervention Participants were randomized 2:2:1:1 to receive (1) 4CMenB at 2, 4, and 6 months with routine vaccines (7-valent pneumococcal and combined diphtheria, tetanus, acellular pertussis, inactivated polio, hepatitis B, Haemophilus influenzae type b vaccines); (2) 4CMenB at 2, 4, and 6 months and routine vaccines at 3, 5, and 7 months; (3) 4CMenB with routine vaccines at 2, 3, and 4 months; or (4) routine vaccines alone at 2, 3, and 4 months.

Main Outcome Measures Percentage of participants with human complement serum bactericidal activity (hSBA) titer of 1:5 or greater against 3 MenB strains specific for vaccine antigens (NZ98/254, 44/76-SL, and 5/99).

Results After three 4CMenB vaccinations, 99% or more of infants developed hSBA titers of 1:5 or greater against strains 44/76-SL and 5/99. For NZ98/254, this proportion was 79% (95% CI, 75.2%-82.4%) for vaccination at 2, 4, and 6 months with routine vaccines, 86.1% (95% CI, 82.9%-89.0%) for vaccination at 2, 4, and 6 months without routine vaccines, and 81.7% (95% CI, 76.6%-86.2%) for vaccination at 2, 3, and 4 months with routine vaccines. Responses to routine vaccines given with 4CMenB were noninferior to routine vaccines alone for all antigens, except for the responses to pertactin and serotype 6B pneumococcal polysaccharide. Fever was seen following 26% (158/602) to 41% (247/607) of 4CMenB doses when administered alone, compared with 23% (69/304) to 36% (109/306) after routine vaccines given alone and 51% (306/605) to 61% (380/624) after 4CMenB and routine vaccines administered together.

Conclusion A 4CMenB vaccine is immunogenic against reference strains when administered with routine vaccines at 2, 4, and 6 or at 2, 3, and 4 months of age, producing minimal interference with the response to routine infant vaccinations.

Trial Registration clinicaltrials.gov Identifier: NCT00721396

©2012 American Medical Association. All rights reserved.
proved effective in clinical trials and controlled a clonal MenB outbreak in New Zealand. However, the high strain specificity of these vaccines limited their usefulness, especially in infants and young children.

To develop a vaccine with broader protection, novel antigens identified by sequencing the MenB genome—factor-H binding protein variant 1 (fHbp1), Neisseria adhesin A (NadA), and Neisseria heparin binding antigen (NHBA)—were combined with OMVs from the New Zealand epidemic strain NZ98/254 in a multicomponent serogroup B meningococcal vaccine (4CMenB). To facilitate manufacture and enhance protein stability, fHbp1 and NHBA were combined with other proteins identified during genome sequencing to create 2 fusion proteins, fHbp1, Neisseria adhesin A (NadA), and strain NZ98/254 for OMV. Additional antigens identified by technology assessments. Human complement serum bactericidal activity (hSBA) was assessed against 3 target strains chosen to determine the immunogenicity of individual vaccine components—strain 44/76-SL for fHbp1, strain 5/99 for NadA, and strain NZ98/254 for OMV. The hSBA was expressed as interpolated titers according to reciprocal serum dilutions yielding 50% or greater killing of the target strain after 60 minutes of incubation compared with growth at time 0. An interpolated titer of 1:5 or greater represented 95% confidence that participants achieving this titer had a protective hSBA titer (≥1:4).

Because no hSBA strain specific for NHBA was available at the time of analysis, antibodies to NHBA were measured by enzyme-linked immunosorbent assay and expressed as geometric mean concentrations (GMCs).

Responses to routine vaccines were determined for participants in the accelerated and control groups only, according to availability of serum, using standard correlates of protection to interpret responses. Geometric mean titers (GMTs) of hSBA, routine vaccine antigen-specific IgG GMCs, and the between-group ratios of GMT and GMC were calculated (with 2-sided 95% CIs) using 2-way analysis of variance with a factor for vaccine group and immunization center.
Safety
Parents recorded local injection site reactions (pain, erythema, swelling, and induration) and systemic reactions (ie, fever [axillary temperature \(\geq 38^\circ\text{C}\)], change in eating habits, sleepiness, unusual crying, vomiting, diarrhea, irritability, rash) for 7 days after each vaccination. Injection site pain was classified by the parents as mild (minimal discomfort when the child’s leg was touched), moderate (obvious discomfort when the leg was touched), or severe (pain on movement of the leg). Erythema, induration, and swelling were summarized by maximal severity (1-25 mm, 25-50 mm, and >50 mm, respectively).

Adverse event recording was enhanced by telephone contact in the week after study vaccination. Safety follow-ups were completed 6 months after the last dose of 4CMenB (and at age 10 months in the control group). All serious adverse events reported during the study were recorded. Determination of the relationship between adverse events and the study vaccine was made by a study investigator’s judgment based on temporal relationship and biological plausibility criteria.

Statistics
The primary outcome was assessment of percentages of participants with hSBA titers of 1:5 or greater 1 month after immunization with 4CMenB in the concomitant and accelerated groups, vaccine response being sufficient if the lower limit of the 2-sided 95% Clopper-Pearson CI of this percentage was 70% or greater for all 3 reference strains. In addition, hSBA titers were log transformed and their GMTs and 2-sided 95% CIs calculated. The prespecified population for this analysis was the modified intention-to-treat population, including only those who received a study vaccine and provided evaluable serum samples before and after immunization.

The main secondary outcomes were noninferiority of immune responses to 4CMenB and routine vaccines administered together compared with separately. The percentage of 4CMenB recipients achieving hSBA titers of 1:5 or greater in the concomitant group, obtained from a categorical linear model, was considered noninferior to that in the intercalated group if the lower limits of the 95% CI for the differences in these percentages (concomitant minus intercalated) was greater than -10%. The same criteria were used to determine noninferiority between the control and accelerated groups for the response to routine vaccines.

Additionally, a post hoc noninferiority criterion for the geometric mean ratios of 4CMenB response (intercalated divided by concomitant) obtained from analysis of variance adjusting for center was defined as the lower limit of the 95% CI being greater than 0.5 for all 3 strains. For pertussis antigens, noninferiority of the accelerated compared with the control group was achieved if the lower limit of the 2-sided 95% CI for the ratio of the antigen-specific IgG GMCs after vaccination was greater than 0.67. All antigen thresholds were chosen based on traditional use and acceptance by regulatory authorities. Responses to antigens administered at the same time were analyzed in a per-protocol population, ie, those who received all designated vaccines on time and provided sera within the scheduled window (23-55 days post vaccination) and who received no prohibited medications (systemic antibiotics or systemic/high-dose inhaled corticosteroids).

Modified intention-to-treat analysis was performed as per-randomized group; the per-protocol population was analyzed as per-immunization course received.

A post hoc analysis was performed that used all available data and included imputed values to replace missing data. Each missing value was replaced with a set of plausible values that represent the uncertainty about the correct values to impute. Variables included in the imputation model were actual vaccine administered, center, age, birth weight, weight, height, sex, race, hSBA titers for strains 44/76-SL, 5/99, and NZ98/254 (at baseline and following the third dose), and IgG GMC against NHBA using the adjusted Wald test proposed by Agresti and Coull.

The sample size calculation for the primary outcome was determined using a simulation approach to estimate that 300 participants in the accelerated group would yield 95% power to demonstrate that the lower limit of the 2-sided 95% CI for the true percentage of participants with hSBA titer of 1:5 or greater was 70% or greater. A sample size of 600 in the concomitant and intercalated groups was calculated to provide 87% power to demonstrate noninferiority in response rates for all 3 MenB strains (assuming only 80% provided evaluable sera, response rates to 4CMenB given together with routine immunizations were similar to those in previously published studies, and that response rates to 4CMenB given without routine immunizations were 2% higher for each strain).

Individuals who received at least 1 dose of vaccine and provided postbaseline safety data were included in the safety analyses, for which results were reported descriptively with no formal statistical analyses.

Statistical analysis was performed using SAS version 9.1.

RESULTS
A total of 1885 participants were enrolled (United Kingdom, 561; Italy, 371; Germany, 317; Czech Republic, 283; Belgium, 248; Spain, 105), of whom 1810 (96%) completed the study. Of these, 1636 were included in the modified intention-to-treat immunogenicity analysis (Figure 1) and 1599 in the per-protocol immunogenicity analysis. Median age at enrollment was 68.7 days for all groups, 48.3% to 53.4% of each group were boys, and 93.1% of all participants were white.

Immunogenicity
Primary Outcome. After immunization with 4CMenB and routine vaccines together at either 2, 4, and 6 or 2, 3, and 4 months, 99% or more of participants had hSBA titers of 1:5 or greater for strains 44/76-SL and 5/99 in the modified intention-to-treat analy-
sis (FIGURE 2 and TABLE 1). For strain NZ98/254, percentages were 79.0% (417/528 [95% CI, 75.2% to 82.4%]) and 81.7% (219/268 [95% CI, 76.6% to 86.2%]) following concomitant or accelerated schedules. Lower limits of the 95% CIs were greater than 70% for all 3 tested reference strains, thereby meeting the predefined criteria of a sufficient immune response. Results from multiple imputation analysis were similar (Table 1).

Secondary Outcomes. The difference in the percentage of participants with hSBA titers of 1:5 or greater in the concomitant group minus the intercalated group met the prespecified noninferiority criterion for 44/76-SL and 5/99 but not NZ98/254 (−7.1% [95% CI, −11.7% to −2.6%]) (Table 1). Although the lower limit of the 95% CI for the geometric mean concomitant to intercalated hSBA ratios were all above 0.5, thus meeting

Figure 1. Flowchart of the Modified Intention-to-Treat (MITT) Population

1885 Participants randomized

622 Randomized to receive concomitant schedule

621 Received concomitant schedule as randomized

1 Received routine schedule

70 Excluded

45 No serum or no results (before or after immunization)

18 Withdrawn

9 Withdraw consent

4 Adverse event

2 Protocol deviation

3 Administrative reason

5 Lost to follow-up

2 Not vaccinated

52 Excluded

39 Excluded

88 Excluded

55 No serum or no results (before or after immunization)

27 Withdrawn

15 Withdraw consent

7 Adverse event

4 Protocol deviation

1 Inappropriate enrollment

5 Lost to follow-up

1 Not vaccinated

502 Included in primary immunogenicity analysis

632 Randomized to receive intercalated schedule

625 Received intercalated schedule as randomized

4 Received concomitant schedule

2 Received accelerated schedule

1 Received routine schedule

317 Randomized to receive accelerated schedule

315 Received accelerated schedule as randomized

1 Received concomitant schedule

1 Received intercalated schedule

314 Randomized to receive routine schedule (control)

310 Received routine schedule as randomized

1 Received concomitant schedule

2 Received intercalated schedule

1 Received accelerated schedule

262 Included in primary immunogenicity analysis

278 Included in primary immunogenicity analysis

544 Included in primary immunogenicity analysis

See “Methods” for definitions of groups. The number of infants approached, assessed for eligibility, and primarily excluded is unknown. Six-month follow-up in the safety population was completed by 597 participants in the concomitant group, 599 in the intercalated group, 309 in the accelerated group, and 305 in the routine (control) group. This chart does not show the flow of participants for the per-protocol population (used for calculations of Neisseria heparin binding antigen enzyme-linked immunosorbent assay data and response to concomitant vaccines).

Figure 2. Reverse Cumulative Distribution of hSBA Titers at 1 Month After the Third 4CMenB Vaccination, by Meningococcal Strain (MITT Population)

See “Methods” for definitions of groups. Numbers of participants in each group are as reported in Figure 1. Blue vertical lines indicate reference for hSBA titers of 1:5 or greater. 4CMenB indicates multicomponent serogroup B meningococcal vaccine; hSBA, human complement serum bactericidal activity; MITT, modified intention-to-treat.
the prespecified noninferiority criterion, it is notable that the upper limit of the 95% CI for these ratios were all less than 1 (Table 2).

The geometric mean ratios (concomitant divided by accelerated) of hSBA titers were similar for strains 44/76-SL and NZ98/254 (confidence intervals crossing 1) but higher for strain 5/99 (1.61 [95% CI, 1.41 to 1.84]). IgG GMCs against NHBA 1 month after the third 4CMenB vaccination were 4342 (95% CI, 4067-4635) when 4CMenB was administered separately from routine vaccines, compared with 3211 (95% CI, 2949-3495) to 3332 (95% CI, 3120-3558) when administered together (3120-3558) when administered to

The percentages of participants achieving the threshold of response for DTaP-HBV-IPV/Hib components were noninferior in the accelerated group compared with the control group (lower limits of 95% CI of the differences in these values being greater than −10%), with the exception of pertactin (difference, −4% [95% CI, −11% to 3%]). Noninferiority was demonstrated for 6 of the 7 serotypes in the pneumococcal vaccine (serotypes 4, 9V, 14, 18C, 19F, 23F) but not for serotype 6B (difference, −5% [95% CI, −14% to 3%]), because the lower limit of the difference in the percentage of participants with antibody response greater or equal to the prespecified cutoff level was −14% (Table 4).

Reactogenicity and Safety

The numbers of participants experiencing adverse reactions after immunization are shown in the eTable available at http://www.jama.com. Throughout the study, fewer than 1% of all participants experienced severe erythema, swelling, or induration at either of the vaccination sites. However, 12% to 16% in the concomitant and accelerated groups, respectively, experienced severe local pain after a dose of 4CMenB, compared with 1% to 3% after doses of DTaP-HBV-IPV/Hib or PCV7 in the control group.

Fever (≥38.0°C) after any vaccination was described in 80% (501/624) in the concomitant group and 76% (243/318) in the accelerated group, compared with 51% (160/311) in control group and 71% (447/627) in the intercalated group. For the intercalated group there were twice as many immunization days, and therefore more opportunity for fever to be experienced. Rates of fever per 4CMenB dose are shown in the eTable.

Table 1. Results of the Number of Infants Achieving Bactericidal Titers of 1:5 or Greater and the Percentages at Baseline and 1 Month After the Third Vaccination (MITT Population and Multiple Imputation) and Vaccine Group Differences

<table>
<thead>
<tr>
<th>Group</th>
<th>Concomitant</th>
<th>Intercalated</th>
<th>Accelerated</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain 44/76-SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline, No./total</td>
<td>47/525</td>
<td>38/531</td>
<td>16/272</td>
<td>16/248</td>
</tr>
<tr>
<td>MITT</td>
<td>9.0 (6.7 to 11.7)</td>
<td>7.2 (5.1 to 10.0)</td>
<td>5.9 (3.4 to 9.4)</td>
<td>6.5 (3.7 to 10.3)</td>
</tr>
<tr>
<td>Multiple imputation</td>
<td>8.7 (6.8 to 11.2)</td>
<td>6.80 (6.1 to 9.2)</td>
<td>6.8 (4.2 to 9.8)</td>
<td>6.5 (4.1 to 9.7)</td>
</tr>
<tr>
<td>Post third dose, No./total</td>
<td>521/525</td>
<td>528/531</td>
<td>270/272</td>
<td>11/248</td>
</tr>
<tr>
<td>MITT</td>
<td>99.2 (98.1 to 99.8)</td>
<td>99.4 (98.4 to 99.9)</td>
<td>99.3 (97.4 to 99.9)</td>
<td>99.1 (98.1 to 99.8)</td>
</tr>
<tr>
<td>Multiple imputation</td>
<td>98.9 (96.6 to 99.1)</td>
<td>98.8 (96.4 to 99.1)</td>
<td>98.4 (94.3 to 98.7)</td>
<td>98.9 (96.6 to 99.1)</td>
</tr>
<tr>
<td>Strain 5/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline, No./total</td>
<td>28/520</td>
<td>34/517</td>
<td>12/266</td>
<td>15/226</td>
</tr>
<tr>
<td>MITT</td>
<td>5.4 (3.6 to 7.7)</td>
<td>6.6 (4.6 to 9.1)</td>
<td>4.5 (2.3 to 7.7)</td>
<td>6.6 (3.7 to 10.7)</td>
</tr>
<tr>
<td>Multiple imputation</td>
<td>5.4 (4.0 to 7.7)</td>
<td>6.7 (4.9 to 8.9)</td>
<td>4.9 (3.0 to 7.8)</td>
<td>6.0 (3.7 to 9.2)</td>
</tr>
<tr>
<td>Post third dose, No./total</td>
<td>517/520</td>
<td>513/517</td>
<td>266/266</td>
<td>12/226</td>
</tr>
<tr>
<td>MITT</td>
<td>99.4 (98.3 to 99.9)</td>
<td>99.2 (98.0 to 99.8)</td>
<td>100 (98.6 to 100)</td>
<td>99.4 (98.3 to 99.9)</td>
</tr>
<tr>
<td>Multiple imputation</td>
<td>99.1 (96.8 to 99.3)</td>
<td>98.7 (96.2 to 98.9)</td>
<td>98.6 (94.6 to 98.9)</td>
<td>99.1 (96.8 to 99.3)</td>
</tr>
</tbody>
</table>

Abbreviation: MITT, modified intention-to-treat.

©2012 American Medical Association. All rights reserved.
Over the 8- to 10-month study, 166 serious adverse events were reported in 158 participants: 63 (10%) in the concomitant group, 57 (9%) in the intercalated group, 19 (6%) in the accelerated group, and 19 (6%) in the control group. Of these, 20 (9 concomitant, 7 intercalated, 3 accelerated, and 1 control) were thought to be possibly related to 4CMenB or routine vaccinations. Four possibly related serious adverse events were seizures, 1 each following routine vaccination in the intercalated and accelerated groups, and 2 following vaccination with 4CMenB in the intercalated group, 1 of the latter being a febrile seizure 2 days after the second 4CMenB dose. Two hypotonic hypore...
responsive episodes were reported, 1 within 12 hours of concomitant 4CMenB and routine vaccines and 1 within 6 hours after routine vaccines in the intercalated group. Two cases of Kawasaki disease were reported, 1 of which was considered possibly related to the study vaccine by an independent expert panel. Six children were observed in the hospital because they had experienced fever within 2 days after vaccination with 4CMenB. The remaining 5 possibly related serious adverse events were aseptic meningitis, retinal dystrophy (believed to be congenital), transient synovitis of the right hip, a transient hearing loss noted by a parent, and transient apnea after concomitant vaccination.

COMMENT

This study of more than 1800 infants shows that when administered together with routine vaccines to healthy infants, a primary immunization course of 4CMenB is immunogenic against 3 reference strains expressing 1 of 3 vaccine antigens. Furthermore, 4CMenB was immunogenic when administered in a 2-, 3-, and 4-month schedule, an important finding given the high rates of MenB disease in the first 6 months of life.15,16 These results suggest that there can be some flexibility in the incorporation of 4CMenB into the various immunization schedules used in different countries.

Table 4. Immunogenicity of Routine Vaccines (DTaP-HBV-IPV-Hib and 7-Valent Pneumococcal) Given Concomitantly With or Without 4CMenB; Total Number and Percentage of Infants With Seroresponse Greater Than or Equal to a Prespecified Level and Geometric Mean Antibody Concentrations (per-Protocol Population).a

<table>
<thead>
<tr>
<th>Vaccine Antigen</th>
<th>Threshold of Response</th>
<th>No. of Participants With Positive Threshold/Total No. Tested (% Participants Achieving Threshold of Response) [95% CI]</th>
<th>Geometric Mean Antibody Concentration/Titers [95% CI]</th>
<th>Accelerated Group</th>
<th>Control Group</th>
<th>Difference in Mean Geometric Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria</td>
<td>IgG ≥0.10 IU/mL</td>
<td>238/238 [99 to 100]</td>
<td>209/210 [97 to 100]</td>
<td>0 (–1 to 3)</td>
<td>1.43 (1.30 to 1.57)</td>
<td>1.69 (1.53 to 1.87)</td>
</tr>
<tr>
<td>Tetanus</td>
<td>IgG ≥0.10 IU/mL</td>
<td>236/238 [98 to 100]</td>
<td>210/210 [98 to 100]</td>
<td>0 (–2 to 2)</td>
<td>1.91 (1.71 to 2.13)</td>
<td>2.00 (1.78 to 2.25)</td>
</tr>
<tr>
<td>Pertussis</td>
<td>≥4-fold increase in IgG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHA</td>
<td>182/238 [76 to 88]</td>
<td>156/210 [74 to 80]</td>
<td>71 (65 to 79)</td>
<td>2 (–6 to 10)</td>
<td>71 (64 to 79)</td>
<td>1.01 (0.89 to 1.14)</td>
</tr>
<tr>
<td>Pertactin</td>
<td>195/238 [87 to 91]</td>
<td>181/210 [89 to 91]</td>
<td>143 (125 to 164)</td>
<td>–4 (–11 to 3)</td>
<td>185 (160 to 214)</td>
<td>0.77 (0.65 to 0.91)</td>
</tr>
<tr>
<td>Pertussin toxin</td>
<td>204/238 [86 to 90]</td>
<td>186/210 [89 to 93]</td>
<td>35 (31 to 39)</td>
<td>–3 (–9 to 4)</td>
<td>37 (33 to 41)</td>
<td>0.94 (0.82 to 1.08)</td>
</tr>
<tr>
<td>Polio antigen</td>
<td>Titers ≥1:8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>174/175 [99 to 100]</td>
<td>162/164 [99 to 100]</td>
<td>103 (83 to 128)</td>
<td>1 (–2 to 4)</td>
<td>151 (120 to 189)</td>
<td>0.68 (0.53 to 0.89)</td>
</tr>
<tr>
<td>Type 2</td>
<td>162/174 [93 to 96]</td>
<td>155/164 [95 to 97]</td>
<td>62 (48 to 80)</td>
<td>–1 (–7 to 4)</td>
<td>89 (69 to 115)</td>
<td>0.70 (0.52 to 0.94)</td>
</tr>
<tr>
<td>Type 3</td>
<td>175/175 [100 to 100]</td>
<td>159/164 [97 to 99]</td>
<td>257 (201 to 329)</td>
<td>3 (1 to 7)</td>
<td>366 (284 to 472)</td>
<td>0.70 (0.52 to 0.94)</td>
</tr>
<tr>
<td>PRP-Hib</td>
<td>IgG ≥0.15 µg/mL</td>
<td>233/236 [99 to 99]</td>
<td>204/209 [98 to 99]</td>
<td>1 (–2 to 4)</td>
<td>2.39 (2.01 to 2.86)</td>
<td>2.51 (2.10 to 3.01)</td>
</tr>
<tr>
<td>Hepatitis type B virus</td>
<td>IgG ≥10 µg/mL</td>
<td>199/206 [97 to 99]</td>
<td>189/194 [97 to 99]</td>
<td>–1 (–5 to 3)</td>
<td>243 (193 to 305)</td>
<td>0.76 (0.58 to 1.01)</td>
</tr>
<tr>
<td>Pneumococcal serotype</td>
<td>IgG ≥0.35 µg/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PnC 4</td>
<td>215/228 [94 to 97]</td>
<td>192/203 [96 to 97]</td>
<td>192/203 [96 to 97]</td>
<td>0 (–5 to 4)</td>
<td>1.97 (1.67 to 2.32)</td>
<td>2.08 (1.74 to 2.48)</td>
</tr>
<tr>
<td>PnC 6B</td>
<td>162/228 [71 to 77]</td>
<td>155/203 [76 to 80]</td>
<td>198/203 [98 to 99]</td>
<td>–5 (–14 to 3)</td>
<td>4.31 (3.71 to 5.00)</td>
<td>3.61 (3.08 to 4.24)</td>
</tr>
<tr>
<td>PnC 9V</td>
<td>224/228 [98 to 99]</td>
<td>198/203 [98 to 99]</td>
<td>198/203 [98 to 99]</td>
<td>1 (–2 to 4)</td>
<td>5.06 (4.28 to 6.00)</td>
<td>4.12 (3.44 to 4.93)</td>
</tr>
<tr>
<td>PnC 14</td>
<td>223/228 [96 to 100]</td>
<td>192/203 [96 to 97]</td>
<td>192/203 [96 to 97]</td>
<td>3 (0 to 8)</td>
<td>5.06 (4.28 to 6.00)</td>
<td>4.12 (3.44 to 4.93)</td>
</tr>
<tr>
<td>PnC 18C</td>
<td>223/228 [98 to 100]</td>
<td>195/203 [96 to 97]</td>
<td>195/203 [96 to 97]</td>
<td>2 (–6 to 8)</td>
<td>4.61 (3.91 to 5.42)</td>
<td>3.67 (3.09 to 4.37)</td>
</tr>
<tr>
<td>PnC 19F</td>
<td>224/228 [98 to 99]</td>
<td>198/203 [98 to 99]</td>
<td>198/203 [98 to 99]</td>
<td>1 (–2 to 4)</td>
<td>4.58 (3.89 to 5.39)</td>
<td>4.48 (3.77 to 5.34)</td>
</tr>
<tr>
<td>PnC 23F</td>
<td>212/228 [93 to 96]</td>
<td>195/203 [96 to 98]</td>
<td>195/203 [96 to 98]</td>
<td>–3 (–7 to 2)</td>
<td>2.38 (1.98 to 2.87)</td>
<td>2.68 (2.19 to 3.26)</td>
</tr>
</tbody>
</table>

Abbreviations: DTaP-HBV-IPV-Hib, combined diphtheria, tetanus, acellular pertussis, inactivated polio, hepatitis B, Haemophilus influenzae type b; FHA, filamentous hemagglutinin; 4CMenB, multicomponent serogroup B meningococcal vaccine; PRP-Hib, polyribosylribitol phosphate Haemophilus influenzae type b polysaccharide.

aSee “Methods” for definitions of groups.

©2012 American Medical Association. All rights reserved.

JAMA, February 8, 2012—Vol 307, No. 6
Corrected on February 28, 2012
Immunogenicity of 4CMenB
When administered alone in the intercalated group rather than with routine vaccines, 4CMenB elicited higher hSBA GMTs for all strains. Similarly, administration of 4CMenB in a 2-, 4-, and 6-month schedule, rather than an accelerated 2-, 3-, and 4-month schedule, resulted in higher hSBA GMTs for the 5/99 strain. However, immunization schedules need to balance the advantages of optimal immunogenicity and the practical need to minimize immunization visits and ensure early immunization. The clinical significance of any reduction in hSBA GMTs is uncertain, given that the proportion of participants with an hSBA titer of 1:5 or greater was at least 70% for all strains in all 4CMenB recipients. Lower hSBA GMTs may lead to shorter persistence of bactericidal antibodies following primary immunization, as observed with the serogroup C meningococcal vaccines17–19 and with the New Zealand MenB vaccine (MeNZB).8,20 A follow-up study of the same participants assessing antibody persistence and the response to a booster dose of 4CMenB has been undertaken21 and will further inform the relative benefits of the different immunization schedules.

4CMenB immunogenicity in this study is consistent with previous small trials that found 4CMenB to be more broadly immunogenic when given with OMVs,8,9 possibly because of a synergistic or enhancing effect of the OMV. Furthermore, the OMV component of 4CMenB was used as a vaccine to control a clonal outbreak of MenB disease in New Zealand, with an apparent effectiveness of 85% in children aged 6 months to 5 years22 after inducing very similar hSBA titers against strain NZ98/254.23 This provides confidence that the levels of functional antibody induced by this vaccine could indeed induce protection against strains expressing the vaccine antigens.

Immunogenicity of Routine Vaccines
Concomitant 4CMenB impaired the immunogenicity of only 2 routine vaccines: pertactin and pneumococcal serotype 6B. This is unlikely to be of clinical significance, because acellular pertussis vaccines that lack pertactin are known to be effective, and evidence suggests that pneumococcal disease resulting from the 6B serotype is lower in countries that have implemented vaccination with the PCV7 vaccine, although the putative response threshold of IgG level of 0.35 µg/mL or greater was achieved only by a relatively low percentage of the immunized population, possibly resulting from both direct protection and herd immunity.24

Breadth of Protection
Three strains expressing key vaccine antigens were used for hSBA analysis, demonstrating “proof of principle” immunogenicity of these antigens but allowing only limited conclusions regarding cross-protection against other naturally occurring strains. Also, data from assays using strains genetically engineered to express a range of fHbp subvariants25 and from early phase 2 studies68 suggest that genotypic analysis of panels of invasive strains is not sufficient to predict the likely breadth of coverage of 4CMenB immunization against invasive meningococcal disease in infants.

Further information regarding the breadth of protection could be achieved by testing against a more extended panel of strains, as in previous 4CMenB infant studies,8,9 but the number of strains that can be tested by hSBA is limited by the volume of sera available from infants, the limited supply of suitable human complement, and the unsuitability of many strains for hSBA.26 This, combined with the evolutionary and geographical variation in the target MenB antigens, makes selection of strain panels difficult.27 The meningococcal antigen testing system28 using an antigen-specific enzyme-linked immunosorbent assay (evaluating both immunological cross-reactivity and antigen expression) has an accuracy of 86% in predicting the hSBA response and might be suitable to assess the proportion of MenB strains likely to be covered by the vaccine on a regional basis. Recently presented data suggest that pooled sera from children immunized with the 4CMenB vaccine would be bactericidal against 78% (95% CI, 66% to 91%) of invasive strains in Europe29 and against 76% (95% CI, 59% to 87%) of such strains in Australia.30 However, the ability of these laboratory assays to accurately predict the effects of a MenB vaccine—possibly also on non-MenB pathogens expressing vaccine antigens—is unknown and can only be evaluated properly following implementation in a program with close surveillance.

Reactogenicity
Outer membrane vesicle vaccines (eg, MeNZB) have been administered to more than 3 million children across all age groups and are considered well tolerated and safe.23 In trials of MeNZB to control clonal outbreaks in New Zealand, fever was the most pronounced adverse reaction,31 with no additional reactogenicity burden with concomitant administration of MenB and routine vaccines. In contrast, in this study 4CMenB appeared to be less reactogenic when administered separately rather than together with routine vaccines (although the study made no formal statistical comparisons of reactogenicity rates between groups). The majority of children in this study became febrile after receiving their first and second dose of concomitant 4CMenB and routine vaccines, although only 1 child in our study had a febrile convolution (2 days following 4CMenB administration). There is therefore a need to compare the risk profile of a relatively common, but transient, postimmunization fever with the benefit of reducing the risk of an uncommon, but potentially fatal, meningococcal infection. This must be carefully communicated to parents in the event of routine implementation if the possibility of increased systemic reactogenicity is to be an accepted component in the control of this serious disease. Rates and
magnitude of fever in this study are comparable with those seen with other pediatric vaccines, notably after the second dose of ASO3p-adjuvanted split virion H1N1 influenza vaccine used in children aged 6 months to 5 years and whole-cell pertussis vaccine in 1 study, and were actually lower than those observed in another study of the pertussis vaccine.

Limitations
The open-label design could potentially bias reporting of adverse events if parents were more alert to subjective reactions such as irritability if their child received 4CMenB rather than routine vaccines. This would be less likely to influence objective measures such as temperature and extent of swelling or erythema. The 3 strains selected for hSBA analysis do not specifically evaluate the immunogenicity of NHBA, because the only strain expressing NHBA also contained porin protein A homologous to the OMV component. Concentrations of IgG specific to NHBA increased following administration of 4CMenB; however, this was also observed following administration of a vaccine containing the recombinant proteins without OMVs in early phase 2 studies. This increase in IgG GMCs was not associated with an increase in hSBA titers against NZ98/254, raising doubts about the bacterial qualities of these antibodies. A naturally occurring strain allowing the assessment of NHBA-induced bacterial activity has recently been identified and will provide important additional information regarding the immunogenicity of this antigen.

CONCLUSIONS
In conclusion, 4CMenB was immunogenic, generally well tolerated, and showed minimal interference with routine vaccines in the first year of life. The flexibility in schedule allows it to be incorporated into a range of country-specific immunization schedules and for primary immunization to be completed in early infancy. If licensed, the decisions regarding vaccine introduction will require detailed assessment of potential vaccine coverage at a regional level and monitoring after implementation to determine the accuracy of such predictions. Nevertheless, this vaccine could potentially provide improved protection for infants against meningococcal disease beyond the protection provided by currently licensed vaccines.

Author Affiliations: Oxford Vaccine Group, NIHR Oxford Biomedical Research Centre, and Department of Paediatrics, University of Oxford, Oxford, United Kingdom (Dr Gossger, Snape, and Pollard); Centre for Statistics in Medicine, Oxford (Ms Yu); Bristol Children’s Vaccine Centre, University of Bristol, and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom (Dr Finn); Division of Pediatrics, Department of Medical Sciences, University of Piemonte Orientale, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy (Dr Bona); Department of Maternal and Pediatric Sciences, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milan, Italy (Dr Esposito and Principi); Centro Superior de Investigacion en Salud Publica (CSISP), Valencia, Spain (Dr Diez-Domingo); Département de Pédiatrie, Université Catholique de Louvain, Cliniques Saint Luc, Brussels, Belgium (Dr Sokal); NETSTAP e.V., Bochum, Germany (Dr Becker); Center for Clinical Studies, Department of Paediatric Immunology, University of Mainz, Mainz, Germany (Dr Kieninger); University Hospital, Hradec Králové, Czech Republic (Dr Prymula); and Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, and Siena, Italy (Drs Dull, Toneatto, Kimura, and Ms Ypma).

Author Contributions: Ms Ypma had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Snape, Finn, Esposito, Principi, Prymula, Dull, Ypma, Tonaetat, Kimura, Pollard. Acquisition of data: Gossger, Snape, Finn, Bona, Esposito, Principi, Diez-Domingo, Sokal, Becker, Kieninger, Prymula, Pollard. Analysis and interpretation of data: Gossger, Snape, Yu, Finn, Bona, Esposito, Principi, Dull, Ypma, Tonaetat, Kimura, Pollard. Drafting of the manuscript: Gossger, Snape, Yu, Esposito, Principi, Ypma, Pollard. Critical revision of the manuscript for important intellectual content: Snape, Yu, Finn, Esposito, Principi, Diez-Domingo, Sokal, Becker, Kieninger, Prymula, Dull, Ypma, Tonaetat, Kimura, Pollard. Statistical analysis: Yu, Dull, Ypma. Administrative, technical, or material support: Sokal. Obtaining funding: Esposito, Principi, Pollard. Study supervision: Snape, Bona, Esposito, Principi, Prymula, Dull, Tonaetat, Pollard.

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Drs Snape, Finn, Esposito, Principi, Diez-Domingo, Kieninger, Sokal, Prymula, and Pollard reported receiving nonclinical research support from Novartis and Pfizer; Diez-Domingo and Kieninger reported receiving grants or grants pending from Crucell, GlaxoSmithKline, Novartis Vaccines, Tatebo, and Pfizer/Wyeth. The study was performed with the support of funds and personnel from Novartis Vaccines and Diagnostics.

REFERENCES

©2012 American Medical Association. All rights reserved.

15. Ramsay ME. Current epidemiology of meningococcal disease in the UK and Europe, including issues for surveillance relating to a MenB vaccine. Presented at: Meningitis Research Foundation Conference; September 11-16, 2010; Banff, Alberta, Canada.

33. Kitchin N, Southern J, Morris R, et al. A randomised controlled study of the reactogenicity of anacellular pertussis-containing pentavalent infant vaccine compared to a quadrivalent whole cell pertussis-containing vaccine and oral poliomyelitis vaccine, when given concurrently with meningococcal group C conjugate vaccine to healthy UK infants at 2, 3 and 4 months of age. Vaccine. 2006;24(18):3964-3970.
