In Reply: Dr Kapoor addresses the important issue of rate- vs rhythm-control strategy for AF. We agree that symptomatic patients with persistent AF may benefit from a rhythm-control strategy and recommend therapeutic choices be made on an individual basis. We do not dispute the efficacy of amiodarone in treatment of AF. However, there are other efficacious antiarrhythmics for restoration and maintenance of sinus rhythm that pose less long-term patient risk. For example, the SAFE-T investigators found sotalol and amiodarone similarly efficacious in patients with ischemic heart disease.1 SAFE-T followed up patients (mean age, 67.1 [SD, 9.3] years) for a mean of 3.5 years. In the AFFIRM trial,2 patients (mean age, 69.7 [SD, 9.0] years) were likewise followed up for a mean of 3.5 years. This period may not adequately reflect the impact of adverse effects on younger patients treated with amiodarone. The AFFIRM investigators noted that patients with AF often need treatment for decades, not years.

Discrepancies between AFFIRM and SAFE-T may be due to differences in patient enrollment and study end points. Patients with self-terminating, short episodes (<2 days) could be enrolled in AFFIRM but not in SAFE-T. Symptomatic patients considered unsuitable for a rate-control strategy may not have been enrolled in AFFIRM. The primary end point of SAFE-T was time to first AF recurrence after sinus rhythm had been restored. Maintenance of sinus rhythm was not a primary end point of AFFIRM.1,2 In young patients with paroxysmal AF and no structural heart disease, propafenone, flecaïnide, and sotalol seem more prudent than long-term amiodarone and are consistent with current American College of Cardiology/American Heart Association/European Society of Cardiology guidelines.3

Dr Coccoani raises an important question about the safety of amiodarone therapy in CHF. We do not contend that amiodarone per se is beneficial or recommend amiodarone prophylaxis in patients with CHF.

Risks, benefits, and alternatives to antiarrhythmic agents should be analyzed carefully in patients with CHF. Negative inotropic or proarrhythmic potential should never be minimized. Dofetilide and amiodarone are the safest options for patients with CHF and atrial tachyarrhythmias who require pharmacotherapy to restore and/or maintain sinus rhythm. Amiodarone is the safest agent for patients with CHF who require pharmacotherapy (beyond β blockade) for ventricular arrhythmias. The beneficial role of amiodarone in acute management of ventricular arrhythmias (regardless of hemodynamic stability), electrical storm, and as an ad-
mies is limited and the ionizing radiation is of uncertain safety to the samples. Clinical magnetic resonance imaging (MRI) has been applied to ancient dry tissues after sample-altering rehydration, a process deemed necessary due to the lack of unbound protons. We show the ability of standard clinical MRI to visualize historic dry tissues without rehydration by use of a newly available MRI pulse sequence.

Methods. Ancient artificially embalmed Egyptian mummies (1 head, 2 hands, and 1 foot; circa 1500-1100 BCE; private collection of FR) and a naturally mummified Peruvian corpse (circa 1100 CE; Museum of History and Ethnography, St Gallen, Switzerland) were examined using a 3-dimensional ultra-short-echo time (UTE) sequence on a standard 1.5-T clinical MRI scanner (256² matrix; 32 768 projections, nonselective radiofrequency pulses of 60 microseconds duration; Magnetom Avanto, Siemens AG Medical Solutions, Erlangen, Germany). The 3-dimensional isotropic original data sets were cropped around the sample and volume rendered on standard Leonardo workstations (Siemens AG Medical Solutions) and by Amira version 4.1 software (ZUSE Institute, Berlin, Germany). Correlative multislice CT imaging of all samples was conducted (Orthopedic University Hospital Balgrist, Zurich, Switzerland).

Results. We analyzed proton density–weighted images (isotropic spatial resolution, 0.8-1.1 mm) of soft tissues, bones, mummification-related wrappings, or embalming materials (Figure 1A and B). All samples showed transverse relaxation times (T2) of approximately 300 microseconds, except 1 mummy hand with a T2 of 1.5 milliseconds. Longitudinal relaxation time (T1) was approximately 5 to 10 milliseconds. The magnetic resonance images generally allowed spatial dry mummy tissue discrimination. Subchondral bone appeared bright in comparison with CT scan, and different bone qualities (cortical vs trabecular) could be assessed (Figure 2). Tissues with a high content of collagen type I such as the anuli fibrosi of the intervertebral disk were visible. Among other visualized structures, arteries and ligaments could be discriminated (Figure 3), as well as bone marrow, meninges, and teeth.

Comment. Magnetic resonance imaging using a UTE sequence and standard clinical hardware may be a suitable modality for noninvasive studies of dry soft tissues in paleoanthropological, paleopathological, or forensic research. Yet radiology of mummified samples should be interpreted cautiously because dehydration changes the imaging properties (density on radiograph and CT scan, hydrogen density and mobility on MRI) of the tissues. The relaxation times of tissue such as mummified muscles and bone are generally very short (<1 millisecond) in comparison with those in vivo (eg, T2 of human calf muscle is approximately 25 milliseconds), which has previously made magnetic resonance–based imaging impossible. However, the UTE sequence allows for imaging of dry tissues with extremely short relaxation times.

©2007 American Medical Association. All rights reserved.
Clinical MRI allows for a sustainable approach favored for rare historic specimens. Our study suggests that morphological alterations by invasive rehydration of the sample before imaging can now be avoided for dry tissues. This study is limited by evaluation of only 2 specimens, and further research is needed to assess the usefulness of the technique on a broader range of tissues. If this is confirmed, the technique may allow anatomical variations and pathological alterations such as atherosclerotic lesions, intervertebral disk protrusion, or degenerative arthritis to be effectively examined qualitatively as well as quantitatively by spatial proton density distribution. In addition, embalming substances show a large signal variation in the MRI, allowing for improved analysis of chemically diverse materials.

Access to Data: Dr Bönü had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Financial Disclosures: Dr Rühl reports receiving travel fees from Forschungskredit University of Zurich, Zurich, Switzerland, and from Siemens AG Medical Solutions, Erlangen, Germany. Mr von Waldenburg reports receiving salary support and travel fees from Forschungskredit University of Zurich and travel fees from Siemens AG Medical Solutions. Drs Nielles-Vallespin and Speier are employees of Siemens AG Medical Solutions. Dr Rühl reports no financial disclosures.

Funding/Support: Salary support, travel fees, examination fees, and computer hardware were provided by Forschungskredit University of Zurich. Travel fees were provided by Siemens AG Medical Solutions. Computer software was provided by Hans-Christian Hege, ZUSE Institute, Berlin, Germany.

Role of the Sponsor: The sponsors had no role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript.

Additional Contributions: Georges Bonani, PhD, Institute for Particle Physics ETH, Zurich, Switzerland, was compensated for AMS-C14-dating of specimens. Jürg Hodler, Dr Med, Orthopedic University Hospital Balgrist, Zurich, Switzerland, provided uncompensated technical comments and also allowed uncompensated access to technical equipment (CT scan). Peter Groscurth, Dr Med, Institute of Anatomy, University of Zurich, Zurich, Switzerland, provided long-time nonfinancial general support.