Diagnosis of Intra-amniotic Infection by Proteomic Profiling and Identification of Novel Biomarkers

Michael G. Gravett, MD
Miles J. Novy, MD
Ron G. Rosenfeld, MD
Ashok P. Reddy, PhD
Thomas Jacob, PhD
Mark Turner, MS
Ashley McCormack, PhD
Jodi A. Lapidus, PhD
Jane Hitti, MD
David A. Eschenbach, MD
Charles T. Roberts, Jr, PhD
Srinivasa R. Nagalla, MD

Context Intra-amniotic infection (IAI) is commonly associated with preterm birth and adverse neonatal sequelae. Early diagnosis of IAI, however, has been hindered by insensitive or nonspecific tests.

Objective To identify unique protein signatures in rhesus monkeys with experimental IAI, a proteomics-based analysis of amniotic fluid was used to develop diagnostic biomarkers for subclinical IAI in amniotic fluid and blood of women with preterm labor.

Design, Setting, and Participants Surface-enhanced laser desorption-ionization/time-of-flight mass spectrometry, gel electrophoresis, and tandem mass spectrometry were used to characterize amniotic fluid peptides in 19 chronically instrumented pregnant rhesus monkeys before and after experimental IAI. Candidate biomarkers were determined by liquid chromatography–tandem mass spectrometry. Polyclonal antibodies were generated from synthetic peptides for validation of biomarkers of IAI. Amniotic fluid peptide profiles identified in experimental IAI were subsequently tested in a cohort of 33 women admitted to Seattle, Wash, hospitals between June 25, 1991, and June 30, 1997, with preterm delivery at 35 weeks or earlier associated with subclinical IAI (n=11), preterm delivery at 35 weeks or earlier without IAI (n=11), and preterm contractions with subsequent term delivery at later than 35 weeks (n=11).

Main Outcome Measures Identification of peptide biomarkers for occult IAI.

Results Protein expression profiles in amniotic fluid showed unique signatures of overexpression of polypeptides in the 3- to 5-kDa and 10- to 12-kDa molecular weight ranges in all animals after infection and in no animal prior to infection. In women, the 10- to 12-kDa signature was identified in all 11 patients with subclinical IAI, in 2 of 11 with preterm delivery without IAI, and in 0 of 11 with preterm labor and term delivery without infection (P<.001). Peptide fragment analysis of the diagnostic peak in amniotic fluid identified calgranulin B and a unique fragment of insulinlike growth factor binding protein 1, which were also expressed in maternal serum. Mapping of other amniotic fluid proteins differentially expressed in IAI identified several immunoregulators not previously described in amniotic fluid.

Conclusions This proteomics-based characterization of the differential expression of amniotic fluid proteins in IAI identified a distinct proteomic profile in an experimental primate chorioamnionitis model that detected subclinical IAI in a human cohort with preterm labor. These diagnostic protein expression signatures, complemented by immunodetection of specific biomarkers in amniotic fluid and in maternal serum, might have application in the early detection of IAI.
Recent advances in proteomics present a new opportunity to examine the global expression of proteins in tissues and fluids. The proteins or peptides that are preferentially expressed and identified in a disease or pathologic state are well suited for the development of convenient, rapid, sensitive, and specific diagnostic assays. The objective of this study was to discover novel biomarkers for subclinical or occult IAI by proteomic profiling methods. We used surface-enhanced laser desorption-ionization/time-of-flight (SELDI-TOF) mass spectrometry, gel electrophoresis, and tandem mass spectrometry to characterize amniotic fluid peptides in pregnant rhesus monkeys with experimental IAI. The proteome profile that was identified in infected monkeys was then tested for its ability to detect subclinical IAI among women in preterm labor.

METHODS

Experimental IAI in Nonhuman Primates

The protocol was approved by the Institutional Animal Care and Utilization Committee of the Oregon National Primate Research Center and followed humane animal care guidelines. Nineteen pregnant rhesus monkeys was then tested for its ability to detect subclinical IAI among women in preterm labor. 19 nonadjacent fields11 and identified in infected monkeys was then tested for its ability to detect subclinical IAI among women in preterm labor.

Subclinical IAI in Women

The study population was drawn from 309 women admitted in premature labor at 22 to 34 weeks of gestation with intact fetal membranes to the University of Washington Medical Center or associated hospitals in Seattle between June 25, 1991, and June 30, 1997, as previously reported.12 These women represented 27% of eligible women and did not differ from nonparticipants in maternal age, race, parity, gravidity, prior preterm delivery, or gestational age at delivery. Informed consent was obtained and the protocol approved by the respective institutional review boards.

Transabdominal amniocentesis was performed and maternal venous blood samples were collected by venipuncture in all study participants at the time of enrollment. Amniotic fluid microbial cultures were performed for facultative and anaerobic bacteria and for genital mycoplasma (M hominis, U parvum), as previously described.10 Preterm labor was defined as regular uterine contractions at a frequency of 10 minutes or less with either documented cervical change or a cervical dilation of more than 1 cm or effacement greater than 50%.

Subclinical IAI was defined by a positive amniotic fluid microbial culture and/or an amniotic fluid interleukin 6 (IL-6) concentration greater than 2 ng/mL, histologic evidence for chorioamnionitis (defined as presence of ≥10 polymorphonuclear leukocytes per 400× field in 10 nonadjacent fields12 and absence of uterine tenderness or fever). We have previously reported that an amniotic fluid IL-6 concentration of more than 2 ng/mL was at or above the 75th percentile for the entire study population and was associated with the detection of bacteria by polymerase chain reaction.12 Women with cervical dilatation of more than 4 cm or ruptured membranes at admission were excluded.

A subset of patients was identified from this study population for proteomic analysis as reported herein. This subset included 3 groups of 11 patients each. Group 1 included all patients with evidence of subclinical IAI as defined herein for whom amniotic fluid and maternal serum were available; group 2 was a randomly selected subset of patients without documented intrauterine infection but with preterm birth at 35 weeks of gestation or earlier; and group 3 consisted of randomly selected patients without infection and with preterm labor responsive to tocolytic therapy who subsequently delivered near term (>35 weeks).
of gestation). Samples were stored at –20°C until analysis and not thawed more than twice. Repeated thawing did not affect SELDI-TOF profiles or protein identification.

SELDI-Mass Spectrometry Profiling of Amniotic Fluid

A total of 0.5 to 3.0 µg of unfraccionated protein from amniotic fluid was analyzed on 3 different protein chip arrays, a normal-phase NP 20 (SiO2 surface), a reverse-phase H4 (hydrophobic surface), and immobilized nickel (IMAC) chips (Ciphergen Biosystems Inc, Fremont, Calif). Chips were incubated for 1 hour with the sample followed by a 5-µL water wash. After drying, a saturated solution of sinapinic acid in 50% acetonitrile (vol/vol) and 0.5% trifluoroacetic acid (vol/vol) was added before reading the arrays on a SELDI-TOF instrument (Ciphergen Protein Biology System II, Ciphergen Biosystems). Spectra were calibrated using internal standards and analyzed using Protein Chip software, version 3.0 (Ciphergen Biosystems).

Protein Identification by Liquid Chromatography (LC)–Tandem Mass Spectrometry Analysis

One hundred micrograms of amniotic fluid protein from control and infected samples was reduced with iodoacetamide and resolved on a 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The gel was stained with Coomassie blue R-250, and distinct bands from each lane were cut from the gel, destained, and digested in gel with trypsin for 24 hours at 37°C using the method of Courtchesne and Patterson. Peptides were then extracted with 0.1% trifluoroacetic acid and purified using Zip-Tip c18 pipette tips from Millipore. After in-gel digestion, samples were analyzed on a Q-Tof-2 mass spectrometer (Micromass, Manchester, England) coupled to a CapLC (Waters Inc, Milford, Mass) and/or on an ion trap (LCQ, ThermoFinnigan, San Jose, Calif) coupled to a 1100 Capillary LC System (Agilent Technologies, Foster City, Calif). Reverse-phase separation was performed using an Integratron C18 75-µm ID × 15-cm fused silica capillary column (Q-TOF2) and Zorbax C-18 0.5-mm × 150-mm microbore column using a 10 µL min−1 flow rate and a gradient of 0% to 40% (75% acetonitrile in water) over 1 hour (LCQ). For Q-Tof-2 analysis, masses of 400 to 1500 Da were scanned for the mass spectrometry survey and masses of 50 to 1900 Da were scanned for tandem mass spectrometry. Tandem mass spectrometry spectra were acquired in an automated mode using standard LCQ software.

Statistical Analysis

Proteomic Analysis. Analysis of mass spectrometry/mass spectrometry spectra was performed using SEQUEST software, version 3.1 (ThermoFinnigan) and DTASelect (Scripp Research Institute, La Jolla, Calif) as described. Searches were run with the default parameters using a combined, indexed, nonredundant database of protein sequences obtained from the Protein Information Resource and SwissProt (http://www.expasy.org). S-carboxyamidated cysteine was the only considered modification. Spectra from the LCQ mass spectrometer were filtered with a cross-correlation score cutoff of 2.4 for the doubly charged ions. Each spectra and proposed sequence pair selected by DTASelect were visually inspected and the final results were input into a Microsoft Access database (Microsoft, Redmond, Wash).

Study Population/Outcomes. The 3 groups of women were compared using 1-way analysis of variance for continuous data (P values from F statistics are presented) and by the Pearson χ² or 2-tailed Fisher exact test for categorical data. For each analysis, overall differences were assessed; no pairwise comparisons were evaluated because of the small sample size. All analyses were performed using SAS, version 8 (SAS Institute Inc, Cary, NC).

Using the Pearson χ² statistic with 2 degrees of freedom and 33 patients allocated equally into the 3 patient groups, the power to detect an effect size of 0.54 was calculated (NCSS and PASS Number Cruncher Statistical Systems, Kaysville, Utah). As an example, an effect of this size corresponds approximately to correctly classifying 9 of 11 in group 1, 7 of 11 in group 2, and 9 of 11 in group 3. Thus, the sample size was adequate to detect effects that would be observed in evaluating currently available diagnostic tests that have sensitivity of 80% and a specificity of 80%.

Polyclonal Antibodies and Western Immunoblotting

Immunogenic peptides from corresponding proteins were used to generate rabbit polyclonal antibodies (DSL Laboratories, Webster, Tex). Affinity-purified antibodies were then used for Western blots. One hundred micrograms of amniotic fluid protein was resolved on 4% to 20% SDS-PAGE and transferred to polyvinyl difluoride membranes. From maternal serum, 300 µg of protein was used for immunoprecipitation using insulin-like growth factor binding protein 1 (IGFBP-1) monoclonal antibody (DSL Laboratories) and products underwent Western blot analysis. For detection of calgranulin B in maternal serum, 150 µg of albumin-depleted maternal serum was used for Western blot. The membranes were blocked with 5% fat-free milk in phosphate-buffered saline-tris for 45 minutes at room temperature and incubated with 1 µg/mL of primary antibody (IGFBP-1, azurocidin, vitamin D binding protein from DSL Laboratories, and calgranulin B from Santa Cruz Biotechnology, Santa Cruz, Calif) overnight at 4°C. After 3 washes with TBST trisbuffered saline containing 0.1% (vol/vol) Tween-20, the membrane was incubated with 1G-HRP secondary antibody (Sigma Chemical Co, St Louis, Mo) and visualized with enhanced chemiluminescence.

RESULTS

Experimental IAI in Nonhuman Primates

Infection was rapidly established following intra-amniotic inoculation. Uterine contractility, which increased from basal levels of 100 mm Hg × s/h to greater than 10000 mm Hg × s/h, oc-
occurred at a mean (SD) of 33 (9) hours after inoculation with group B *Streptococcus*; a mean (SD) of 43 (14) hours after inoculation with *U parvum*; and a mean (SD) of 62 (14) hours after inoculation with *M hominis*. Uterine contractions led to progressive cervical dilatation and effacement in all instances. Increases in uterine contractility were preceded by significant elevations in the proinflammatory cytokines tumor necrosis factor α, IL-1β, IL-6, and IL-8 and prostaglandins E₂ and F₂α, as previously reported.⁷,⁸ No animal demonstrated clinical signs of IAI prior to onset of labor. Chorioamnionitis was confirmed histologically in all cases.

Subclinical Chorioamnionitis in Women

Demographic and delivery data for the patients are summarized in Table 1. There were no differences in maternal age, race/ethnicity, or parity among the 3 groups. Patients with subclinical IAI had a somewhat earlier gestational age at enrollment and delivered at a significantly earlier gestational age than patients with preterm delivery without infection or those with term delivery. Ninety-one percent of patients with occult IAI delivered within 7 days of enrollment in this study.

Four of 11 patients with occult IAI had microorganisms recovered (2 with *Escherichia coli*, 1 with *Candida albicans*, and 1 with mixed anaerobes). Neither *U parvum* nor *M hominis* was isolated. The other 7 patients with infection were identified on the basis of markedly elevated amniotic fluid IL-6 concentrations (>2 ng/mL). The mean (SD) amniotic fluid concentration of IL-6 was 27.7 (7.8) ng/mL among these patients compared with 0.68 (0.20) ng/mL among those with preterm delivery without infection and 0.25 (0.13) ng/mL among those with preterm contractions but term delivery (*P* < .001).

Identification of Diagnostic Protein Profiles by SELDI-TOF Mass Spectrometry

Whole-spectrum SELDI-TOF mass spectrometry analyses collected at 235 laser intensity of amniotic fluid extracts bound to chemically defined normal-phase chip arrays revealed several peak intensity differences in 3- to 5-kDa and 11- to 12-kDa regions between infected and noninfected primate and human amniotic fluid (Figure 1). The 11-kDa cluster was differentially expressed between control and infected in all cases (*P* = .004). Longitudinal sampling following group B *Streptococcus* inoculation revealed that the 11-kDa peak was first noted as early as 12 hours after inoculation and preceded increases in hourly contraction area in infected animals.

As shown in Figure 2, the 11-kDa peak was also detected in experimental IAI induced by the other 2 microbes. In the human cohort, all 11 patients with confirmed occult IAI and none of the 11 patients who subsequently delivered at term had the SELDI-TOF mass spectrometry profile consistent with IAI and characterized by the presence of the 11-kDa peak. This profile was also present in 2 of 11 patients in whom infection was not confirmed but who delivered prematurely (Table 1). These differences in the proteome profile could not be attributed to differences in gestational age.

Table 1. Identification of Subclinical Intra-amniotic Infection in Humans Using Surface-Enhanced Laser Desorption-Ionization Time-of-Flight Mass Spectrometry Profiling*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Preterm Delivery (<35 wk)</th>
<th>Term Delivery (>35 wk)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intra-amniotic Infection</td>
<td>No Intra-amniotic Infection</td>
<td>After Preterm Labor</td>
</tr>
<tr>
<td>Maternal age, y</td>
<td>24.5 (5.4)</td>
<td>26.6 (9.0)</td>
<td>25.6 (6.0)</td>
</tr>
<tr>
<td>White race, No. (%)</td>
<td>6 (55)</td>
<td>4 (36)</td>
<td>6 (55)</td>
</tr>
<tr>
<td>Parity</td>
<td>1.9 (1.6)</td>
<td>1.9 (1.5)</td>
<td>3.0 (2.5)</td>
</tr>
<tr>
<td>Gestational age, wk</td>
<td>26.9 (1.1)</td>
<td>28.6 (1.1)</td>
<td>30.3 (1.1)</td>
</tr>
<tr>
<td>Enrolment</td>
<td>27.3 (0.9)</td>
<td>29.8 (1.0)</td>
<td>37.0 (0.9)</td>
</tr>
<tr>
<td>Delivery</td>
<td>2.1 (5.6)</td>
<td>8.4 (6.3)</td>
<td>46.0 (5.6)</td>
</tr>
<tr>
<td>Time from enrollment to delivery, d</td>
<td>11/11 (100)</td>
<td>2/11 (18)</td>
<td>0</td>
</tr>
</tbody>
</table>

*Values are expressed as mean (SD) unless otherwise indicated.
†One-way analysis of variance.
‡Pearson χ² test.
§Fisher exact test.

©2004 American Medical Association. All rights reserved.
ing protein) identified in global protein expression analysis. As shown in Figure 3, Western blot analysis confirmed all 3 biomarkers showing differential expression, consistent with the protein identification experiments performed on IAI amniotic fluid.

Using specific antibodies developed against IGFBP-1 and calgranulin B, we investigated whether differentially expressed proteins in amniotic fluid could be identified in pooled maternal serum from a limited number of patients (n=5) for whom serum samples were available. In this limited analysis, the 11-kDa proteolytic fragment of IGFBP-1 and of calgranulin B, corresponding to the 11-kDa peak that was differentially present in infected vs control amniotic fluid, was also detected in maternal serum in response to IAI (Figure 3B) and in nonhuman primates following experimental IAI (data not shown). Azurocidin was not detected in serum.

COMMENT

Intra-amniotic infection is an important and potentially preventable cause of premature births, neonatal sepsis, periventricular leukomalacia/cerebral palsy, and maternal febrile morbidity.2,3,19-21 Overt or subclinical IAI is present in at least 50% of extremely premature births; an inverse relationship has been demonstrated between gestational age at birth and both the frequency of microorganisms recovered from the chorioamnion and histologic chorioamnionitis.22,11

Despite growing evidence that IAI is responsible for a substantial proportion of premature births in the United States, no serologic test for IAI is currently available.

Figure 1. SELDI-TOF Mass Spectrometry Analysis of Amniotic Fluid in Control and Group B Streptococcus--Infected Samples

SELDI-TOF indicates surface-enhanced laser desorption/ionization time-of-flight. Group B Streptococcus infection--induced differential protein expression in nonhuman primate (A) and human (B) amniotic fluid samples. SELDI-TOF--mass spectrometry spectrum of amniotic fluid extracts bound to chemically defined Normal Phase Protein chip arrays. Spectrum from 2.5 to 15 kDa collected at 235 laser intensity. Detailed spectra show increased expression of the 3.5-kDa and 10.8-kDa peaks between control and infected. Arrows indicate the unique peaks represented by polypeptides overexpressed in infection.
States, antibiotic treatment has had limited success in treating patients with preterm labor and intact fetal membranes or in preventing preterm delivery.\(^3,5\) This dilemma may be attributable in part to misclassification and patient selection bias, whereby the subgroup of women with occult IAI and intact fetal membranes that might benefit from antibiotics is not reliably distinguished from women without infection. Accurate and early diagnosis of IAI would facilitate early and appropriate interventions as well as enhance the design of therapeutic trials.

Early diagnosis of IAI is problematic, however, because clinical signs and symptoms (including preterm labor) tend to be late manifestations of this condition. Furthermore, the available noninvasive diagnostic tests have limited predictive value, or, as in the case of measurement of IL-6, polymerase chain reaction tests, or microbial cultures, the results are often delayed and amniocentesis is required.\(^12,22\)

We previously demonstrated in a nonhuman primate model the causal relationship between IAI with group B Streptococcus, \(U\) parvum, or \(M\) hominis and preterm labor, which resembles the clinical progression of events that is observed in women with IAI.\(^7,9\) These microorganisms are also frequently isolated from the amniotic fluid and chorioamnion in women with preterm labor and delivery.\(^11,22,23\) In the rhesus monkey, as in women, histologic appearance of the fetal membranes is consistent with subacute chorioamnionitis.

Therefore, we used this experimental model to search for novel amniotic fluid protein and peptide biomarkers for IAI with the expectation that they could similarly be found in human amniotic fluid and would provide the basis for the subsequent development of sensitive and specific assays to detect subclinical IAI. We identified a unique amniotic fluid peptide profile in IAI by SELDI-TOF that appeared within 12 hours after intraamniotic inoculation of microorganisms and was reliably present before the onset of labor or other clinical signs or symptoms of infection. We validated our observations in a cohort of women in preterm labor by microbiologic, biochemical, or histologic evidence of chorioamnionitis and in a control group without evidence of infection.

We used 2 distinct proteomic approaches: a low-resolution rapid protein fingerprinting approach (SELDI-TOF mass spectrometry) that generates distinct expression profiles and is amenable to developing rapid screening assays, together with a high-throughput protein identification approach (LC–tandem mass spectrometry) that provides the identity of the biomarkers suitable for identification by conventional immunoenzymology.

The detection of a differentially expressed 11-kDa peak in SELDI-TOF mass spectrometry in the setting of IAI in the experimental primate model, which used clinically relevant microorganism, is shown in Figure 1.

![Figure 1. Detection of Intra-amniotic Infection Resulting From Different Microorganisms](image)

Table 2. Immunoregulatory Proteins and Polypeptides Detected Using Tandem Mass Spectrometry and de Novo Sequencing Analysis of Human Amniotic Fluid

<table>
<thead>
<tr>
<th>GenBank Account No.</th>
<th>Protein ID</th>
<th>Protein Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U12026</td>
<td>CAPG_HUMAN</td>
<td>Macrophage capping protein*</td>
</tr>
<tr>
<td>X83006</td>
<td>NGAL_HUMAN</td>
<td>Neutrophil gelatinase-associated lipocalin*</td>
</tr>
<tr>
<td>M19507</td>
<td>PERM_HUMAN</td>
<td>Myeloperoxidase precursor*</td>
</tr>
<tr>
<td>M22230</td>
<td>PLSL_HUMAN</td>
<td>L-plastin (lymphocyte cytosolic protein 1)</td>
</tr>
<tr>
<td>NM001700</td>
<td>AZU1_HUMAN</td>
<td>Azurocidin†</td>
</tr>
<tr>
<td>Z38026</td>
<td>FA39_HUMAN</td>
<td>Antibacterial protein FALL-39 precursor*</td>
</tr>
<tr>
<td>AP159456</td>
<td>Q9UKJ4</td>
<td>Gp-340 variant protein</td>
</tr>
<tr>
<td>AL355932</td>
<td>Q9H4V6</td>
<td>Novel protein similar to mouse von Ebner salivary gland protein, isoform 2</td>
</tr>
<tr>
<td>M93056</td>
<td>ILEU_HUMAN</td>
<td>Leukocyte elastase inhibitor*</td>
</tr>
<tr>
<td>Y00279</td>
<td>S105_HUMAN</td>
<td>Calgranulin A</td>
</tr>
<tr>
<td>X06233</td>
<td>S109_HUMAN</td>
<td>Calgranulin B*†</td>
</tr>
</tbody>
</table>

*Peptides representing these proteins are more abundantly or uniquely detected in infected amniotic fluid.†Proteins also shown to be differentially expressed by immunoenzymology.
organisms and in women infected with different microorganisms, confirms this signature for IAI caused by a broad range of pathogens. Peptides within the differentially expressed peak may represent a basic intrauterine immune response to infection since one set of proteins identified in this unique cluster, ie, the calgranulins, are members of the S-100 calcium-binding protein family, expressed by macrophages and by epithelial cells in acutely inflamed tissues. The second candidate from this cluster, a specific proteolytic fragment of IGFBP-1, indicates a potential protease-related mechanism in response to infection. Intact IGFBP-1 is the major IGFBP found in amniotic fluid and is synthesized by both fetal membranes and maternal decidua. Although the proteolytic cleavage of IGFBPs is a well-characterized phenomenon, the particular fragment described in the current study has not been previously described.

In the second approach, characterization of proteins expressed in amniotic fluid in control and IAI using LC–tandem mass spectrometry identified a significant number of infection and immune response–related molecules in IAI for the first time. Macrophage-capping protein is a Ca²⁺-sensitive protein that modulates actin filaments and is involved in inflammatory processes. Leukocyte elastase and neutrophil gelatinase-associated lipocalcin are involved in bacteriostatic and bactericidal mechanisms.

In addition to the above immunomodulators, the detection of bacterial proteins Fall-39 and azurocidin in amniotic fluid in response to infection provides new insights into intrauterine immune responses. Antibacterial protein Fall-39 (LL-37) binds to bacterial lipopolysaccharides, is a potent chemotactic factor for mast cells, and serves as a first-line defense to prevent local infection and systemic invasion of microbes. Azurocidin (CAP37) is a cathelicidin antimicrobial peptide isolated from human neutrophils with important implications in host defense and inflammation. Glycoprotein-340 variant protein is a scavenger receptor previously identified in lung that binds to bacteria. Identification of these proteins complements the sensitive proteomic approaches used to identify biomarkers for IAI. Since our experimental objectives were focused on the discovery of novel biomarkers unique to IAI, we did not look for the peptide profiles of cytokines such as IL-6.

Currently available laboratory tests used to confirm the diagnosis of IAI include measurement of maternal C-reactive protein, direct examination of amniotic fluid for leukocytes or bacteria on Gram stain, amniotic fluid microbial culture or polymerase chain reaction, measurement of amniotic fluid glucose and IL-6 concentrations, and detection of amniotic fluid leukocyte esterase. Only microbial cultures and broad-spectrum bacterial recombinant DNA polymerase chain reaction of amniotic fluid appears to be sensitive and specific for IAI. However, microbial cultures for genital mycoplasmas or polymerase chain reaction–based tests are not widely available and amniocentesis is required to obtain amniotic fluid.

One advantage of a proteomics-based approach is that candidate peptide biomarkers lend themselves to the development of rapid point-of-service and cost-effective diagnostic immunoassays that can be completed within hours. By analogy with other amniotic fluid and serum screening tests (eg, a-fetoprotein for neural tube defects), we predicted that peptides identified within infected amniotic fluid could also be detected in maternal serum and might lead to the development of noninvasive diagnostic tests. Our preliminary results using pooled maternal serum samples suggest the feasibility of this approach, in that IGFBP-1–restrictive fragment and calgranulin B are 2 such candidate biomarkers that appear in both amniotic fluid and maternal blood during IAI but not in the absence of infection (Figure 3B). In contrast, elevated IL-6 concentrations have not been reported in maternal serum in association with intra-amniotic infection.

In summary, we used a proteomics-based analysis of amniotic fluid to identify biomarkers for IAI in both an experimental nonhuman primate model and a cohort of women with preterm labor and occult IAI. Diagnostic protein expression profiles were identified by

Figure 3. Immunodetection of Potential Biomarkers for Intra-amniotic Infection

A Amniotic Fluid

- Calgranulin B (13 kDa)
- Azurocidin (26.8 kDa)
- VDBP (52.9 kDa)
- IGFBP-1, Intact Protein (30 kDa)
- IGFBP-1, Proteolytic Fragment (11 kDa)
- VDBP (52.9 kDa)

B Pooled Human Maternal Serum

- Calgranulin B (13 kDa)
- VDBP (52.9 kDa)
- IGFBP-1, Intact Protein (30 kDa)
- IGFBP-1, Proteolytic Fragment (11 kDa)
- VDBP (52.9 kDa)

A, Nonhuman primate control and infected amniotic fluid and human control and infected amniotic fluid. VDBP indicates vitamin D binding protein, an unregulated control marker. Insulin-like growth factor binding protein 1 (IGFBP-1) bands represent the intact protein (approximately 30 kDa) and proteolytic fragment (approximately 11 kDa). B, Detection of calgranulin B and IGFBP-1 in pooled human maternal serum from immunoprecipitates.
SELDI-TOF mass spectrometry profiling that was both sensitive and specific in detecting IAI. High-throughput analysis of expressed proteins in amniotic fluid identified expression of several immunoregulatory molecules for the first time. Immunodetection of proteins detected in the diagnostic 11-kDa peak (IGFBP-1 and calgranulin B) confirmed the presence and differential expression of these biomarkers in amniotic fluid and in maternal blood during IAI.

Our findings hold promise for the future development of rapid and noninvasive assays to detect occult IAI during pregnancy. This would be an important breakthrough since it would allow clinicians and investigators to target a particular subgroup of women at high risk of premature delivery for specific interventions and in therapeutic trials. Finally, these studies demonstrate the potential utility of proteomics-based approaches to identify specific biomarkers and diagnostic profiles for infectious and inflammatory processes and in pathophysiologic conditions of pregnancy.

Author Affiliations: Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, Ore (Dr Gravett and Novy); Departments of Obstetrics and Gynecology (Dr Gravett) and Pediatrics (Dr Rosenfeld, Roberts, and Nagalla) and Division of Biostatistics, Public Health and Preventive Medicine (Dr Lapidus), Oregon Health and Science University, and ProteoGenix Inc (Drs Reddy, Jacob, and McCormack and Mr Turner), Portland, Ore; Lucile Packard Foundation for Children’s Health, Palo Alto, Calif (Dr Rosenfeld); Department of Obstetrics and Gynecology, University of Washington (Drs Hitti and Eschenbach), Seattle.

Author Contributions: Dr Gravett had full and complete access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Gravett, Rosenfeld, Eschenbach, Nagalla.

Acquisition of data: Gravett, Rosenfeld, Reddy, Jacob, Turner, McCormack, Hitti, Eschenbach, Roberts, Nagalla.

Analysis and interpretation of data: Gravett, Novy, Rosenfeld, Reddy, Jacob, Lapidus, Hitti, Eschenbach, Roberts, Nagalla.

Drafting of manuscript: Gravett, Novy, Rosenfeld, Hitti, Eschenbach, Nagalla.

Critical revision of the manuscript for important intellectual content: Gravett, Novy, Rosenfeld, Reddy, Jacob, Turner, McCormack, Lapidus, Hitti, Eschenbach, Roberts.

Statistical analysis: Gravett, Lapidus, Hitti.

Obtained funding: Gravett, Novy, Eschenbach, Nagalla.

Administrative, technical, or material support: Gravett, Novy, Rosenfeld, Reddy, Jacob, Turner, McCormack, Eschenbach, Roberts.

Study supervision: Gravett, Novy, Rosenfeld, Eschenbach, Nagalla.

REFERENCES

Table. Genotype Distribution and Allele Frequency of +896 A→G (Asp299Gly) TLR4 Gene Polymorphisms in Male Patients With Acute Myocardial Infarction, Young Male Controls, and Oldest Old Male Controls From Sicily

<table>
<thead>
<tr>
<th></th>
<th>Genotypes, No. of Patients*</th>
<th>Allele Frequency, No. of Alleles (%)†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>AA</td>
</tr>
<tr>
<td>Patients with AMI</td>
<td>105</td>
<td>100</td>
</tr>
<tr>
<td>Young controls</td>
<td>127</td>
<td>114</td>
</tr>
<tr>
<td>Oldest old controls</td>
<td>55</td>
<td>41</td>
</tr>
</tbody>
</table>

Abbreviation: AMI, acute myocardial infarction.

*The distribution of genotypes was in Hardy-Weinberg equilibrium (by χ² test) in all of the groups.
†Allele frequencies were significantly different among the 3 groups (χ², P<.001). After adjustment for smoking habits, family history of CVD, and the presence of type 2 diabetes, obesity, hypertension, hypercholesterolemia, and hyperglycemia, significant differences in frequencies of single nucleotide polymorphisms persisted between patients with AMI and oldest old men (P=.002), and between young and oldest old controls (P<.001).

(P<.001), with intermediate values in healthy young controls (TABLE). After adjustment for risk factors, significant differences in SNP frequency persisted between patients with AMI and oldest old men (P=.002) and between young controls and oldest old controls (P<.001).

Comment. Some studies have shown that individuals with the Asp299Gly TLR4 SNP have a lower risk of atherosclerosis and a decreased risk of acute coronary events independent of the standard coronary risk factors. However, discordant results have been reported. The causes of the discrepancies are not clear, but the inclusion criteria, the study populations, and the measured end point differed substantially among the studies. However, our results support a role of the innate immune defense system and particularly TLR4 in CVD. These results fit well with a recent study supporting a role of TLR4 in atherogenesis and with the largest epidemiologic evaluation so far, which showed lower levels of C-reactive protein with concomitant reduction in risk of coronary artery disease in patients carrying the studied SNP.

Our comparison with the oldest old may help elucidate the role of genetics in age-associated diseases characterized by a multifactorial etiology. Finally, TLR4 polymorphisms, which attenuate receptor signaling, enhance the risk of infections but decrease that of atherogenesis, presumably by limiting inflammatory responses. Hence, the mutation might result in an increased chance of longevity in a modern environment with reduced pathogen load and improved control of severe infections by antibiotics.

Carmela Rita Balistreri, SciD
Giuseppina Candore, PhD
Giuseppina Colonna-Romano, SciD
Domenico Lio, MD
Immunosenescence Unit
Department of Pathobiology and Biomedical Methodologies
University of Palermo
Palermo, Italy

Marco Caruso, MD
Enrico Hoffmann, MD
Department of Internal Medicine
Cardiovascular and Nephro-Urological Diseases
University of Palermo
Claudio Franceschi, MD
Italian National Research Center on Aging
Ancona, Italy
Department of Experimental Pathology and Interdepartmental Center “L. Galvani”
University of Bologna
Bologna, Italy
Calogero Caruso, MD
marcoc@unipa.it

Immunosenescence Unit
Department of Pathobiology and Biomedical Methodologies
University of Palermo

Access to Data: Dr C. Caruso had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analyses.

Funding/Support: This study was supported by grants from the University of Palermo (Drs Candore, Lio, Colonna-Romano, and C. Caruso) and from the University of Bologna (Dr Franceschi), as well as funds from the EU 5FP T-CIA project (Dr Franceschi) and the Italian Ministry of Health (Genetic and Non-genetic Factors for Health in Elderly) (Drs Franceschi and Colonna-Romano). The collaboration between the “Gruppo di Studio sull’Immunosenescenza” coordinated by Dr C. Caruso and the Istituto Nazionale di Riposo e Cura per Anziani (INRCA), Ancona, was supported by an INRCA grant (Longevity and Elderly Disability Biological Markers).

Role of the Sponsors: The organizations funding this study had no role in the design and conduct of the study; the collection, interpretation, and analysis of the data; the preparation of the data; or the preparation, review, or approval of the manuscript.

Disclaimer: Dr Balistreri is a PhD student in the pathobiology PhD curriculum (directed by Dr C. Caruso) of Palermo University and this work is in partial fulfillment of the requirement for the PhD.

CORRECTION

Financial Disclosure Omitted: In the Preliminary Communication entitled “Diagnosis of Intra-amniotic Infection by Proteomic Profiling and Identification of Novel Biomarkers” published in the July 28, 2004, issue of JAMA (2004;292:462-469), a financial disclosure was omitted. Oregon Health and Science University (OHSU), Drs Gravett, Rosenfeld, Reddy, Jacob, Roberts, and Nagalla and Mr Turner all have a significant financial interest in Proteogenix Inc, a company that may have a commercial interest in the results of this research and technology. Among the 3 investigators involved in statistical analysis of the study (Drs Gravett, Lapidus, and Hittl), the latter 2 have no potential financial interest in the results of this research. This potential conflict of interest has been reviewed and a management plan approved by the OHSU Conflict of Interest in Research Committee, and the Integrity Program Oversight Council has been implemented.