Diagnosis, Microbial Epidemiology, and Antibiotic Treatment of Acute Otitis Media in Children
A Systematic Review

Tumaini R. Coker, MD, MBA
Linda S. Chan, PhD
Sydne J. Newberry, PhD
Mary Ann Limbos, MD, MPH
Marika J. Suttrop, MS
Paul G. Shekelle, MD, PhD
Glenn S. Takata, MD, MS

Acute otitis media (AOM) is the most common childhood infection for which antibiotics are prescribed in the United States.1-3 A study using 2006 Medical Expenditure Panel Survey data demonstrated an average expenditure of $350 per child with AOM, totaling $2.8 billion.4 Timely and accurate diagnosis and appropriate management of AOM may have significant consequences for ambulatory health care utilization and expenditures.

Multiple systematic reviews on AOM diagnosis and management have been conducted,5-10 including our 2001 study,11 which was the basis for the 2004 American Academy of Pediatrics and American Academy of Family Physicians joint practice guidelines.12 Since then, new trials have been published, the heptavalent pneumococcal conjugate vaccine (PCV7) has become widely used, and clinician practice has changed regarding antibiotic choice for AOM.13

See also Patient Page.

CME available online at www.jamaarchivescme.com and questions on p 2186.

Context Acute otitis media (AOM) is the most common condition for which antibiotics are prescribed for US children; however, wide variation exists in diagnosis and treatment.

Objectives To perform a systematic review on AOM diagnosis, treatment, and the association of heptavalent pneumococcal conjugate vaccine (PCV7) use with AOM microbiology.

Data Sources PubMed, Cochrane Databases, and Web of Science, searched to identify articles published from January 1999 through July 2010.

Study Selection Diagnostic studies with a criterion standard, observational studies and randomized controlled trials comparing AOM microbiology with and without PCV7, and randomized controlled trials assessing antibiotic treatment.

Data Extraction Independent article review and study quality assessment by 2 investigators with consensus resolution of discrepancies.

Results Of 8945 citations screened, 135 were included. Meta-analysis was performed for comparisons with 3 or more trials. Few studies examined diagnosis; otoscopic findings of tympanic membrane bulging (positive likelihood ratio, 51 [95% confidence interval (CI), 36-73]) and redness (positive likelihood ratio, 8.4 [95% CI, 7-11]) were associated with accurate diagnosis. In the few available studies, prevalence of Streptococcus pneumoniae decreased (eg, 33%-48% vs 23%-31% of AOM isolates), while that of Haemophilus influenzae increased (41%-43% vs 56%-57%) pre- vs post-PCV7. Short-term clinical success was higher for immediate use of ampicillin or amoxicillin vs placebo (73% vs 60%; pooled rate difference, 12% [95% CI, 5%-18%]; number needed to treat, 9 [95% CI, 6-20]), while increasing the rate of rash or diarrhea by 3% to 5%. Two of 4 studies showed greater clinical success for immediate vs delayed antibiotics (95% vs 80%; rate difference, 15% [95% CI, 6%-24%] and 86% vs 70%; rate difference, 16% [95% CI, 6%-26%]). Data are absent on long-term effects on antimicrobial resistance. Meta-analyses in general showed no significant differences in antibiotic comparative effectiveness.

Conclusions Otoscopic findings are critical to accurate AOM diagnosis. AOM microbiology has changed with use of PCV7. Antibiotics are modestly more effective than no treatment but cause adverse effects in 4% to 10% of children. Most antibiotics have comparable clinical success.

JAMA. 2010;304(19):2161-2169 www.jama.com

Author Affiliations: Department of Pediatrics, Mattel Children’s Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California (Dr Coker); RAND, Santa Monica, California (Dr Coker); Division of Biostatistics and Outcomes Assessment, Los Angeles County–USC Medical Center, Los Angeles (Dr Chan); USC Keck School of Medicine, Los Angeles (Dr Chan, Limbos, and Takata); Southern California Evidence-based Practice Center, RAND Health, Santa Monica, California (Drs Newberry and Shekelle and Ms Suttrop); West Los Angeles VA Medical Center, Los Angeles (Dr Shekelle); and Division of General Pediatrics, Childrens Hospital Los Angeles, Los Angeles (Dr Takata).

Corresponding Author: Tumaini R. Coker, MD, MBA, UCLA/RAND Center for Adolescent Health Promotion, David Geffen School of Medicine at UCLA, 10960 Wilshire Blvd, Ste 1550, Los Angeles, CA 90024 (tcoker @rand.org).

Clinical Review Section Editor: Mary McGrae McDermott, MD, Contributing Editor. We encourage authors to submit papers for consideration as a Clinical Review. Please contact Mary McGrae McDermott, MD, at mmd6008@northwestern.edu.

©2010 American Medical Association. All rights reserved.
In light of these additional studies and practice changes, we conducted a systematic review to support the new AOM practice guidelines (currently in preparation) from the American Academy of Pediatrics. We report on the evidence for (1) the precision and accuracy of AOM diagnosis, (2) the association of PCV7 use with changes in AOM microbial epidemiology, (3) the decision about whether to treat with antibiotics, and (4) the comparative effectiveness of different antibiotics for uncomplicated AOM in average-risk children and associated antibiotic-related adverse events.

METHODS

Literature Search and Study Selection

We searched PubMed, the Cochrane Controlled Clinical Trials Register Database, the Cochrane Database of Reviews of Effectiveness, and the Web of Science for articles published January 1999 through July 2010 on AOM diagnosis, treatment outcomes, and association of PCV7 use with changes in AOM microbiology using Medical Subject Headings terms (eg, otitis media, vaccines), key words (eg, diagnostic, microbiology, therapy), and individual antibiotic terms. This search supplemented a previous January 1966 through March 1999 search with additional key words for PCV7 and newer antibiotics.11 We performed reference mining of relevant systematic reviews.

We included articles in any language that studied children aged 4 weeks to 18 years. We excluded studies on children with immunodeficiencies and craniofacial anomalies. Systematic reviews, randomized controlled trials (RCTs), controlled clinical trials, and observational studies were included in the initial search; case reports, clinical overviews, editorials, and practice guidelines were excluded.

Observational studies were considered for the PCV7 and diagnostic questions but excluded for the treatment question. For the PCV7 question, only articles that assessed AOM microbiology (using middle ear fluid) both before and after PCV7 implementation were included. For the diagnostic question, we considered studies of children that performed independent comparisons of signs or symptoms with a clear criterion standard; studies using clinicians in training were excluded. For the antibiotic comparative effectiveness question, only studies that examined clinical improvement as an outcome (not just microbiologic findings) were included. The search strategy and inclusion/exclusion criteria are detailed elsewhere.19

Data Abstraction

Two investigators (T.R.C., M.A.L.) independently reviewed titles and abstracts for potentially relevant articles. They then independently abstracted data from the full-text articles using structured review forms that included inclusion/exclusion criteria, outcome measures, and study quality. Disagreements were resolved by consensus; the principal investigators (P.G.S., G.S.T.) resolved remaining disagreements. The study biostatistician abstracted data (verified by a clinician investigator) for pooled analyses. One investigator independently abstracted treatment-related adverse event data.

Quality Assessment

We used the Jadad criteria to assess RCT quality,15 AMSTAR16 to assess systematic review quality, and QUADAS17 to assess diagnostic study quality.

Data Synthesis

For diagnostic studies, we report summary data, including sensitivities and specificities, when available. The number of studies was insufficient to allow pooling of data across studies. Furthermore, the criterion standards for the diagnostic studies varied widely.

For studies examining the association between PCV7 use and changes in AOM microbial epidemiology, we report summary data; the studies were too few in number and lacked enough consistency across study design and population for pooled analysis.

For treatment studies, an adequate number of articles was identified for pooled analyses of some comparisons. Comparisons were grouped by individual antibiotics rather than by antibiotic class to maximize the clinical relevance of our findings. The only a priori exception was to group ampicillin with amoxicillin because of similarity. When 3 or more articles examined the same comparison, we used the DerSimonian and Laird random-effects model to pool rate differences across studies.18 Sensitivity analysis was performed for pooled significant findings.

For pooled estimates, we report the I² statistic and P value for the χ² test of heterogeneity, which tests the null hypothesis that individual study results are homogeneous.19,20 I² values near 100% represent high degrees of heterogeneity. For assessment of publication bias in our pooled analyses, we report the Egger asymmetry test.

We used Stata version 10.0 to perform the meta-analyses.21 The study received a waiver of institutional review board review from the RAND Human Subjects Protection Committee.

RESULTS

The literature searches and reference mining yielded 8945 titles. After removal of duplicates and clearly irrelevant titles, 738 went for further review. After 2 rounds of screening, 55 articles were accepted and combined with 80 articles identified from the 2001 systematic review.11 These included 4 articles (3 research articles plus 1 systematic review) on diagnosis, 6 on PCV7-microbiology, and 125 on antibiotic treatment (FIGURE 1).

AOM Diagnosis

In clinical practice, 3 criteria are used to diagnose AOM: (1) acute symptoms of infection, (2) evidence of middle ear inflammation, and (3) presence of middle ear effusion (MEE).12 Published research focuses on what constitutes acute symptoms of infection and what physical findings are associated with middle ear inflammation or effusion. A challenge with
interpreting this research is the lack of a consistent gold standard, which varied from otolaryngologist-made diagnosis to tympanocentesis.

We identified 1 systematic review and 3 additional studies that addressed the question of diagnostic accuracy and precision in identifying any or all of the 3 criteria. Detailed data on these studies are available in our evidence report; findings suggest that certain otoscopic signs are strongly associated with AOM, while data on the importance of symptoms as a predictor of AOM are less convincing.

Symptoms. A 2003 review by Rothman et al found that ear pain (sensitivities: 54%, 60%, 100%; specificities: 82% and 92%; positive likelihood ratio [LR], 3.0 [95% confidence interval {CI}, 2.1 to 4.3]; positive LR, 7.3 [95% CI, 4.4 to 12.1]) and ear rubbing (sensitivity: 42%; specificity: 87%; positive LR, 3.3 [95% CI, 2.1 to 5.1]) were modestly associated with AOM diagnosis. The review by Rothman et al included 4 studies examining specific symptoms among 965 total participants. In 2 of the studies, participants were recruited from otolaryngology practices and may not be representative of the general population of children with AOM. A more recent single study found that among 469 children aged 6 to 36 months presenting to primary care offices with parent-suspected AOM, AOM diagnosis was not associated with occurrence, duration, or severity of parent-reported symptoms (eg, ear rubbing, ear pain, fever).

Otoscopic Signs. One study examined in the review by Rothman et al assessed the association of otoscopic findings of middle ear inflammation (redness: positive LR, 8.4 [95% CI, 7 to 11]) and effusion (cloudy: positive LR, 34 [95% CI, 28 to 42]; bulging: positive LR, 51 [95% CI, 36 to 73]; immobile: positive LR, 31 [95% CI, 26 to 37]) with AOM (determined by clinical symptoms and the presence of MEE). A study published subsequently to the review by Rothman et al examined the accuracy of tympanometric (evaluation of middle ear function by measurement of acoustic impedance) and otoscopic findings compared with tympanocentesis as the criterion standard to determine the presence of MEE. Among children with MEE on tympanocentesis, 97% had type B (abnormal) tympanometry results, and 100% had otoscopic examination findings consistent with AOM. These results may overestimate the accuracy of tympanometry, because the investigators performing otoscopy were not blinded to the tympanometry results, and the criterion standard of tympanocentesis was performed only when otoscopic or tympanometric findings suggested MEE.

In another study subsequent to the review by Rothman et al, 22% of AOM cases diagnosed by a general practitioner were concurrently diagnosed by an otolaryngologist as otitis media with effusion, viral otitis, or a normal tympanic membrane.

**PCV7 and AOM Microbial Epidemiology**

Six studies examined the association between PCV7 use and changes in AOM microbial epidemiology (Table). These studies fit into 2 categories: observational studies of AOM isolates both before and after the 2000 licensure of PCV7 and PCV7 efficacy...
RCTs examining AOM-related organisms. Most studies found that *Haemophilus influenzae* became more prevalent as an AOM isolate and that *Streptococcus pneumoniae* became less prevalent although it remained important. In an observational study of children with persistent AOM or AOM with treatment failure, the proportion of *S pneumoniae* MEE isolates decreased (from 44% in 1998-2000 to 31% in 2001-2003, *P* = .02), while the proportion of *H influenzae* isolates increased (from 43% in 1998-2000 to 57% in 2001-2003).

### Table. Studies of the Effects of Heptavalent Pneumococcal Conjugate Vaccine on Microbial Epidemiology of Acute Otitis Media

<table>
<thead>
<tr>
<th>Source</th>
<th>Setting and Inclusive Years</th>
<th>Participants</th>
<th>Streptococcus pneumoniae</th>
<th>Haemophilus influenzae</th>
<th>All Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casey and Pichichero</td>
<td>Pediatric practice, United States, 1995-2003</td>
<td>551 patients with AOM</td>
<td>31% vs 44% (P = .02)</td>
<td>57% vs 43% (P = .01)</td>
<td></td>
</tr>
<tr>
<td>Block et al</td>
<td>Pediatric practice, United States, 1992-1998 and 2000-2003</td>
<td>379 patients with severe or refractory AOM</td>
<td>31% vs 48% (P = .007)</td>
<td>56% vs 41% (P = .01)</td>
<td></td>
</tr>
<tr>
<td>McEllistrem et al</td>
<td>5 hospitals in the United States, 1999-2002</td>
<td>505 isolates (No. of children not specified)</td>
<td>31% vs 48% (P = .007)</td>
<td>56% vs 41% (P = .01)</td>
<td></td>
</tr>
<tr>
<td>Brook and Gober</td>
<td>Outpatient practice, United States, 1993-1998 and 2001-2006</td>
<td>100 patients with AOM with new spontaneous perforation</td>
<td>31% vs 48% (P = .007)</td>
<td>56% vs 41% (P = .01)</td>
<td></td>
</tr>
</tbody>
</table>

### Randomized controlled trials

<table>
<thead>
<tr>
<th>Source</th>
<th>Setting and Inclusive Years</th>
<th>Participants</th>
<th>Streptococcus pneumoniae</th>
<th>Haemophilus influenzae</th>
<th>All Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eskola et al</td>
<td>8 clinics in Finland, 1995-1999</td>
<td>1662 (with 2596 episodes of AOM)</td>
<td>23% vs 33% (P &lt; .001)</td>
<td>27% vs 23% (P = .02)</td>
<td>MSSA: 8% vs 8%</td>
</tr>
<tr>
<td>Veenhoven et al</td>
<td>2 hospitals in the Netherlands, 1998-2002</td>
<td>383 patients with recurrent AOM</td>
<td>22% vs 35%</td>
<td>35% vs 43%</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: MEF, middle ear fluid; MRSA, methicillin-resistant *Staphylococcus aureus*; MSSA, methicillin-sensitive *Staphylococcus aureus*; PCV7, heptavalent pneumococcal conjugate vaccine.

*P* values are provided for comparisons with *P* < .05.
Figure 2. Treatment Success by Day 14 for Ampicillin/Amoxicillin vs Placebo

<table>
<thead>
<tr>
<th>Study</th>
<th>Placebo</th>
<th>Ampicillin or Amoxicillin</th>
<th>Rate Difference, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadfield et al.30 1967</td>
<td>23/25 (92)</td>
<td>21/21 (100)</td>
<td>-8 (-21 to 5)</td>
</tr>
<tr>
<td>Latchford et al.31 1970</td>
<td>44/49 (90)</td>
<td>30/49 (63)</td>
<td>27 (11 to 43)</td>
</tr>
<tr>
<td>Hoyle and Roussard,43 1972</td>
<td>17/36 (47)</td>
<td>24/116 (21)</td>
<td>27 (9 to 44)</td>
</tr>
<tr>
<td>Burke et al.41 1991</td>
<td>112/114 (98)</td>
<td>101/118 (86)</td>
<td>13 (6 to 19)</td>
</tr>
<tr>
<td>Kalseid et al.42 1971</td>
<td>213/401 (53)</td>
<td>155/408 (38)</td>
<td>15 (8 to 22)</td>
</tr>
<tr>
<td>Damoiseau et al.44 2000</td>
<td>40/112 (36)</td>
<td>36/120 (30)</td>
<td>6 (-6 to 18)</td>
</tr>
<tr>
<td>Le Saux et al.44 2005</td>
<td>232/250 (90)</td>
<td>202/240 (84)</td>
<td>9 (3 to 14)</td>
</tr>
<tr>
<td>Pooled overall</td>
<td>12 (5 to 18)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sizes of data markers are proportional to the sample size of each study in the analysis. CI indicates confidence interval.

2001-2003, P = .01). Another study found an increase (as a proportion of all S pneumoniae isolates) in nonvaccine serotype S pneumoniae and a decrease in vaccine serotype S pneumoniae (non-PCV7 S pneumoniae: from 12% in 1999 to 32% in 2002, P < .01). In a vaccine-efficacy RCT, investigators found a greater proportion of S pneumoniae isolates in the control group (33%) than in the PCV7 group (23%) (P < .001). It is important to note that study findings did not always reach statistical significance, and most studies focused on patients with severe or persistent AOM.

Antibiotics for Uncomplicated AOM

One hundred twenty-five articles compared the effectiveness of antibiotic treatment options in uncomplicated AOM. Older articles that examined antibiotics no longer typically used for AOM are not discussed here but are included in the evidence reports.46

Benefits of Antibiotic Treatment

Evidence about the benefits of treating with antibiotics comes from 2 types of studies: placebo-controlled studies of immediate use of antibiotics and studies comparing immediate use of antibiotics with a strategy of observation with possible delayed treatment (“wait-and-see” or “prescription-to-hold”).

Ampicillin or Amoxicillin vs Placebo

We identified 8 studies that compared ampicillin or amoxicillin with placebo. One did not report clinical success (only pain resolution) and was not included in the pooled analysis.37

In pooled analysis of the remaining 7 RCTs, the random-effects pooled rate difference for success by day 14 was estimated at 12% (95% CI, 5% to 18%), with a 73% success rate for ampicillin/amoxicillin and a 60% success rate for placebo. The number needed to treat (NNT) for clinical success was 9 (95% CI, 6 to 20) (Table 1 [available at http://www.jama.com] and Figure 2). The more recent, higher-quality studies reported smaller benefits. The F statistic was 69% (P = .04 by x^2 test of heterogeneity), indicating the presence of unexplained heterogeneity, which could be attributable to differences in the populations studied, research methods used, or both. The Egger test did not suggest publication bias (P = .77).

In sensitivity analyses, we excluded an outlier because its 95% CI favored placebo far more strongly than any other individual study. The pooled analysis with the remaining 6 articles yielded rates of 70% vs 54% (pooled rate difference, 13% [95% CI, 8% to 19%]), with 7 children (95% CI, 5 to 12) needing treatment with ampicillin/amoxicillin to gain a case of clinical success (F = 62%, P = .09; P = .18 by Egger test). When we pooled the 4 studies with a quality score of 3 or more (of 5), excluding the outlier, the rates were 76% vs 67% (pooled rate difference, 10% [95% CI, 6% to 14%]), and the NNT was 10 (95% CI, 7 to 18), without evidence of heterogeneity (F = 0.0%, P = .48) or publication bias (P = .26).41,43,44

Other Antibiotics vs Placebo

We identified 5 studies that compared other antibiotics with placebo (Table 1), but they are not included in pooled analysis because we examined the overall benefit of antibiotics more commonly prescribed for AOM (ie, amoxicillin) over placebo.

Immediate vs Delayed Antibiotics

We identified 4 studies of delayed treatment approaches; 2 reported higher rates of clinical success with immediate compared with delayed use of antibiotics.45,46 and 2 found no difference.47,48 One article reported rates of 95% vs 80% (rate difference, 15% [95% CI, 6% to 24%]; NNT, 7 [95% CI, 4 to 17]) favoring amoxicillin over the wait-and-see approach for parent-perceived success at day 12,49 whereas the other reported rates of 86% vs 70% (rate difference, 16% [95% CI, 6% to 26%]; NNT, 6 [95% CI, 4 to 17]), also favoring amoxicillin over the prescription-to-hold approach for parent-perceived clinical success at day 3.54

Thirty-four percent46 and 24%46 of participants in the delayed antibiotic groups in these studies received delayed antibiotics, respectively.

Short-term Harms of Antibiotic Treatment

The risk of harms from antibiotic treatment for AOM has been less well studi-
ried than the benefits. Four of the 7 placebo-controlled studies reported on harms. One reported the counterintuitive, although not statistically significant, result of more cases of rash and diarrhea in placebo-treated patients than in amoxicillin-treated patients.44 Pooled analysis of the other 3 trials39-41 yielded rates of 13% vs 8% for diarrhea (pooled rate difference, 5% [95% CI, 0% to 10%]; I² = 23%; P = .30), while 2 individual studies had a rate difference of 4% (4% vs 0%) and 3% (8% vs 5%) for rash40,44; these differences did not reach statistical significance. These point estimates are compatible with published estimates of the rate of rash (3%-10%) and diarrhea (5%-10%).30-33

In the studies by Little et al45 and Spiro et al,46 the rate of diarrhea was higher for the antibiotic group than for the prescription-to-hold group (19% vs 9%; rate difference, 10% [95% CI, 2% to 18%]) and 23% vs 8%; rate difference, 14% [95% CI, 6% to 22%] for the 2 studies, respectively), with a number needed to harm (NNH) of 10 (95% CI, 6 to 50) and 7 (95% CI, 5 to 17), respectively.45,46

McCormick et al49 reported no difference in the rate of antibiotic-related adverse events, and Neumark et al50 did not examine adverse events. In RCTs comparing amoxicillin with other antibiotics, the proportion of amoxicillin-treated children reporting rash ranged from 2% to 11% and the proportion reporting diarrhea ranged from 3% to 16%.54-60

**Long-term Harms of Antibiotic Treatment**

None of the studies evaluated the rates of longer-term adverse effects of immediate antibiotic treatment, including antibiotic resistance.

**Antibiotic Comparative Effectiveness**

eTable 2 describes selected antibiotic comparative effectiveness studies and pooled analyses for comparisons examining 3 or more studies. The Egger test was not suggestive of publication bias for any of the pooled analyses.

The success rate differences were statistically nonsignificant in the pooled analyses comparing ampicillin/amoxicillin vs ceftriaxone (4 trials, F = 50.7%), ampicillin/amoxicillin vs ceftizoxime (4 trials, F = 22.9%), ampicillin/amoxicillin vs cefaclor (4 trials, F = 13.0%), amoxicillin-clavulanate vs ceftriaxone (5 trials, F = 22.9%), cefaclor vs azithromycin (3 trials, F = 0%), and amoxicillin-clavulanate vs 5 days of azithromycin (5 trials, F = 62.2%) and vs 3 or fewer days of azithromycin (7 trials, F = 84.1%).

Statistically significant differences between treatment regimens were found in a few individual studies. Amoxicillin-clavulanate was superior to cefaclor (97% vs 84%; rate difference, 13% [95% CI, 5% to 21%])61; 10 days of amoxicillin-clavulanate was superior to 5 days of azithromycin (86% vs 70%; rate difference, 16% [95% CI, 2% to 30%])62; 5 days of amoxicillin-clavulanate was not as effective as 7 to 10 days (77% vs 88%; rate difference, −11% [95% CI, −20% to −3%] in the study by Cohen et al63 and 71% vs 87%; rate difference, −16% [95% CI, −24% to −8%] in the study by Hoberman et al64); and 5 days of cefitubax was not as effective as 10 days of cefitubax (78% vs 98%; rate difference, −20% [95% CI, −28% to −12%])65.

**Antibiotic-Related Adverse Events**

In the pooled comparisons, use of ampicillin/amoxicillin resulted in a lower rate of diarrhea than ceftriaxone (14% vs 21%; rate difference, −8% [95% CI, −13% to −4%]; NNH, 12 [95% CI, 8 to 25]; F = 0%), and use of amoxicillin-clavulanate resulted in a higher rate of diarrhea than 1 dose of ceftriaxone (20% vs 9%; rate difference, 11% [95% CI, 7% to 16%]; NNH, 9 [95% CI, 6 to 15]; F = 10.8%) and higher rates of any adverse event compared with 5 days of azithromycin (26% vs 9%; rate difference, 16% [95% CI, 7% to 25%]; NNH, 6 [95% CI, 4 to 14]; F = 81.9%).

**COMMENT**

We identified several important findings for AOM diagnosis, microbiology, and antibiotic management.
superiority of any other antibiotic over amoxicillin.

In most cases of uncomplicated AOM when amoxicillin is appropriate (eg, excluding children with penicillin allergy and those who previously did not improve after a course of amoxicillin), there is no evidence for first-line use of higher-cost antibiotics (eg, cefdinir, cefixime). For a 20-kg child with AOM, a 7-day course of cefdinir costs approximately $96, compared with $34 for an equivalent course of amoxicillin (pricing information available at http://www.drugstore.com). In an analysis of data from the National Ambulatory Medical Care Survey, among visits for AOM (visits for a new problem without additional diagnoses requiring antibiotic therapy), amoxicillin was prescribed in 49%, amoxicillin-clavulanate in 16%, cefdinir in 14%, and other cephalosporins in 6%. If just half of the 14% of the estimated 8 million children who visit a physician for AOM annually4 were to receive amoxicillin instead of cefdinir (assuming the other half were appropriately prescribed cefdinir because of a non–type-1 penicillin allergy), the estimated annual savings would exceed $34 million. This estimate does not account for potential additional savings from adopting a less aggressive approach to antibiotic prescribing that might avoid a certain number of prescriptions altogether.

This review has several limitations that must be considered. First, article screening and data abstraction were not blinded, which may potentially introduce bias. However, there is evidence that blinding does not alter the results of meta-analyses.68 Second, we may not have identified some relevant evidence. For example, we did not search EMBASE or seek unpublished data. We used statistical tools to detect publication bias but found no evidence of it in our pooled analyses. Additionally, our findings on diagnosis and microbiology are greatly limited by the small number of studies; thus, caution should be used in interpreting our findings for these topics. To account for variation in study quality, we performed sensitivity analyses that pooled only high-quality studies. Third, the studies varied widely in their definitions of clinical success and AOM diagnostic criteria. Some studies that did not use all 3 AOM diagnostic criteria may have included participants without AOM but with otitis media with effusion or no middle-ear abnormality at all.69,70 Lastly, our pooled analyses included studies completed before and after the licensing of PCV7. It is not clear how the changing microbiology of AOM may have influenced study findings; the heterogeneity of AOM over the past 20 years might favor an analysis that does not include pooling data from studies before and after 2000.90

One remaining question is what new evidence about antibiotic comparative effectiveness is needed. It is not enough to show statistical significance or lack thereof; the clinical importance of any difference must also be considered. This requires knowing the minimal clinically important difference (MCID) for treatment of AOM. Although there currently is no agreed-on value for the MCID, assuming an MCID of 5% (representing a “small” effect size, according to Cohen’s classification71) means that when existing evidence falls entirely within or outside of this MCID, equivalence or significance can be concluded; when it does not, it can be concluded that more information is needed. Using this definition, we can conclude equivalence for 2 of the 8 pooled analyses in eTable 2 and that effects are inconclusive for the remaining 6. The MCID has important implications for our conclusions; for example, in contrast to a previous systematic review,7 we are unable to make definitive conclusions regarding the equivalency of short- vs long-term regimens analyzed by antibiotic when considering an MCID of 5%, except for 7 to 10 days of cefaclor vs 3 days of azithromycin.

To account for both statistical and clinical significance, sample sizes for AOM comparative effectiveness studies need to be large. Because approximately 80% of AOM cases resolve spontaneously,87 most RCTs will be able to test superiority of different antibiotics with only the remaining 20%. If the success rate is 88% for the treatment group and 80% for the control group, a sample size of 1150 per group would provide a 95% CI of the difference of 5% to 11%, which is outside the ±5% MCID; this sample size is much larger than that of any published AOM comparative effectiveness study.

**CONCLUSIONS**

We found evidence to guide the diagnosis and management of AOM in children; however, further research is needed that (1) examines clinicians’ diagnostic accuracy and precision using the 3 AOM diagnostic criteria; (2) continues surveillance of AOM microbiology, especially in view of the newly approved PCV13; and (3) produces more high-quality studies on AOM management that include clear diagnostic criteria, a better-defined menu of clinical success measures that are universally applied, and more investigation into the comparative antibiotic-related adverse event rates that assesses whether any antibiotic regimen is superior to amoxicillin.

**Author Contributions:** Dr Shekelle had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

**Study concept and design:** Coker, Chan, Shekelle, Takata.

**Acquisition of data:** Coker, Chan, Newberry, Limbos, Takata.

**Analysis and interpretation of data:** Coker, Chan, Newberry, Limbos, Suttorp, Shekelle, Takata.

**Drafting of the manuscript:** Coker, Chan, Shekelle, Takata.

**Critical revision of the manuscript for important intellectual content:** Coker, Chan, Newberry, Limbos, Suttorp, Shekelle, Takata.

**Statistical analysis:** Chan, Suttorp.

**Obtained funding:** Shekelle.

**Administrative, technical, or material support:** Newberry.

**Study supervision:** Shekelle, Takata.

**Financial Disclosures:** Dr Takata reported owning 100 shares of Pfizer stock, which he sold at the start of the study. No other authors reported disclosures.

**Funding/Support:** This article is based on research conducted by the Southern California Evidence-based Practice Center (EPC) under contract with the Agency for Healthcare Research and Quality (AHRQ) (contract 290-2007-10056). This work was commissioned by AHRQ as an update to an earlier report and in support of the update of practice guidelines.

**Role of the Sponsor:** AHRQ had a role, through its Office of Research and Methods in support of the update of practice guidelines and in the general method of EPC systematic reviews and in development of the key questions for each review. However, AHRQ had no role in the specific conduct of the review; in
ACUTE OTITIS MEDIA IN CHILDREN

the collection, management, analysis, and interpretation of the data, and for the preparation, review, or approval of the manuscript.

Disclaimer: The authors of this article are responsible for its contents. No statement in this article should be construed as an official position of AHRQ or the US Department of Health and Human Services.


Additional Contributions: Roberta Shanman, MLS (RAND Library), conducted the literature searches. Martha Timmer, MS (EPC, RAND Health, Santa Monica), provided scientific programming and data entry support for the evidence report prepared for AHRQ. Anaessa Motala, BA, and Branneen Johnsen, BS (EPC, RAND Health), contributed to the evidence report and the manuscript. As RAND employees, these individuals were compensated from the EPC contract for this study but none received additional compensation for their contributions.

REFERENCES


The educator is like a good gardener, whose function is to make available healthy, fertile soil in which a young plant can grow strong roots; through these it will extract the nutrients it requires. The young plant will develop in accordance with its own laws of being, which are far more subtle than any human can fathom, and will develop best when it has the greatest possible freedom to choose exactly the nutrients it needs.

—E. F. Schumacher (1911-1977)