Genetic Modifiers of Liver Disease in Cystic Fibrosis

Context A subset (=3%-5%) of patients with cystic fibrosis (CF) develops severe liver disease with portal hypertension.

Objective To assess whether any of 9 polymorphisms in 5 candidate genes (α1-antitrypsin or α1-antitrypsin [SERPINA1], angiotensin-converting enzyme [ACE], glutathione S-transferase [GSTP1], mannose-binding lectin 2 [MBL2], and transforming growth factor β1 [TGFB1]) are associated with severe liver disease in patients with CF.

Design, Setting, and Participants Two-stage case-control study enrolling patients with CF and severe liver disease with portal hypertension (CFLD) from 63 CF centers in the United States as well as 32 in Canada and 18 outside of North America, with the University of North Carolina at Chapel Hill as the coordinating site. In the initial study, 124 patients with CFLD (enrolled January 1999-December 2004) and 843 control patients without CFLD were studied by genotyping 9 polymorphisms in 5 genes previously studied as modifiers of liver disease in CF. In the second stage, the SERPINA1 Z allele and TGFB1 codon 10 genotype were tested in an additional 136 patients with CFLD (enrolled January 2005-February 2007) and 1088 with no CFLD.

Main Outcome Measures Differences in distribution of genotypes in patients with CFLD vs patients without CFLD.

Results The initial study showed CFLD to be associated with the SERPINA1 Z allele (odds ratio [OR], 4.72; 95% confidence interval [CI], 2.31-9.61; P = 3.3 x 10^-6) and with TGFB1 codon 10 CC genotype (OR, 1.53; 95% CI, 1.16-2.03; P = 2.8 x 10^-3) but not with TGFB1 codon 10 A. In the replication study, CFLD was associated with the SERPINA1 Z allele (OR, 3.42; 95% CI, 1.54-7.59; P = 1.4 x 10^-6) but not with TGFB1 codon 10 A. A combined analysis of the initial and replication studies by logistic regression showed CFLD to be associated with SERPINA1 Z allele (OR, 5.04; 95% CI, 2.88-8.83; P = 1.5 x 10^-6).

Conclusions The SERPINA1 Z allele is a risk factor for liver disease in CF. Patients who carry the Z allele are at greater risk (OR, 5) of developing severe liver disease with portal hypertension.

©2009 American Medical Association. All rights reserved.
studied in CF liver disease, including α1-antitrypsin (also known as α1-antiprotease [SERPIN1A, OMIM 107400]),14 angiotensin-converting enzyme (ACE [OMIM 106180]),19 glutathione S-transferase (GSTP1 [OMIM 134660]),20 mannose-binding lectin 2 (MBL2 [OMIM 154545]),21 and transforming growth factor β1 (TGFBI [OMIM 190180]).10 Our initial study compared polymorphic genotypes in these candidate modifier genes in persons with CFLD and in control patients without CFLD aged at least 15 years. We tested our initial findings in a second study in different populations of patients with and without CFLD.

METHODS

Patients

Initial Study. Of the 158 patients with CF evaluated for CFLD (enrolled January 1999–December 2004), 128 fulfilled criteria from 22 CF centers in 10 countries (Australia [8], Canada [17], Czech Republic [17], Germany [3], Italy [28], the Netherlands [1], Scotland [2], Slovakia [4], Turkey [4], and United States [44]). For patients without 2 defined mutations in CFTR, we performed further testing using a panel of 70 mutations (CFTR mutation detection assay; Tm Bioscience/Luminex, Austin, Texas). After genotyping was complete, more than 95% of patients with CFLD and with 2 defined mutations in CFTR had 2 pancreatic insufficient mutations. The 843 control patients without CFLD were enrolled from the United States (759 from 42 centers) and Canada (84 from 32 centers). The majority of the control patients were ascertained from 5 countries (Canada [391 from 32 centers], Czech Republic [30 patients], Ireland [6 patients], Italy [71 patients], and United States [590 from 54 centers]). The majority of the controls had 2 pancreatic insufficient mutations (93.5%; mostly DF508/DF508 [62.8%]).

Enrollment Criteria

All patients had a diagnosis of CF, confirmed by sweat test, CFTR genotyping, or both. CFLD was defined as cirrhosis in patients 2 years or older, confirmed by imaging (ultrasound, computed tomography, magnetic resonance imaging) showing hepatic parenchymal abnormalities and portal hypertension (esophageal varices, portal-systemic collaterals, splenomegaly) in the absence of another cause for liver disease. Data were independently reviewed by 2 hepatologists (S.C.L., P.R.D.) with experience in CFLD to ensure inclusion and exclusion criteria were met, using case report forms, radiology and endoscopy reports, and clinical notes. When there was no consensus, the reviewers requested additional information to clarify the diagnosis of CFLD. No patient was excluded because of race or ethnicity, defined by patient self-report.

We excluded 30 (19%) and 52 (27%) patients originally submitted for the initial and replication studies, respectively, with a presumed diagnosis of CFLD, because they had milder liver disease without portal hypertension or inadequate documentation. For the 47 patients with confirmed CFLD who had undergone a liver transplant (26 in initial study; 21 in replication study), source documents were obtained from dates prior to transplantation. Exclusion criteria for the CFLD group included portal vein thrombosis or other causes of liver disease (alcohol abuse, biliary atresia, clinically significant viral hepatitis, use of parenteral nutrition, and Wilson disease). The study was approved by the institutional review boards of all participating institutions; all participants (or their parent) provided written informed consent.

Exclusion From Analysis Based on Age at Diagnosis of CFLD

In common with previous reports, we found the mean age of diagnosis of CFLD (first documentation of portal hypertension) to be 10.6 (SD, 5.4) years.15,22-25 The diagnosis of CFLD was first established after age 30 years in 7 patients (aged 32, 33, 35, 40, 43, 44, and 47 years), which is 4 or more SDs above the mean of the normal distribution. Therefore, these patients were excluded from the genetic analyses (4 from the initial study, 3 from the replication study).

Data Collection and Laboratory Methods

Patients received a unique identifier code, and data were stored in a secure database in the UNC Bioinformatics Center. Clinical data on standard case report forms included self-reported race/ethnicity, pancreatic exocrine status, medical history, physical examination, laboratory blood work values, and abdominal radiology reports. In addition, we reviewed the following procedure reports if available: liver explant pathology (from liver transplantation), liver biopsy, endoscopy, and colonoscopy.

DNA was extracted from peripheral blood leukocytes using standard protocols.26 Genetic polymorphisms were determined by direct sequencing, microsphere-based genotyping using Illumina BeadArray technology (Illumina Inc, San Diego, California), and site-directed mutagenesis.

Immunohistochemistry with polyclonal rabbit anti-α1-antitrypsin antibody and monoclonal mouse ant-CD68 (clone KP1) antibody (Dako Canada Inc, Mississauga, Ontario, Canada), was performed on the Benchmark XT autoimmunostainer (Ventana Medical Systems, Tucson, Arizona) at dilutions of 1:3000 and 1:5000, respectively. Immunodetection was per-
formed using the Ventana i-VIEW DAB, LSAB kit. Tissue sections were dewaxed, enzyme pretreated for α1-antitrypsin, heat epitope retrieved for CD68, peroxidase, and endogenous biotin blocked using Ventana proprietary reagents. Sections were hematoxylin-eosin counterstained for nuclear detail.

**Statistical Analysis**

Genotype distributions were tested for consistency with expected Hardy-Weinberg equilibrium proportions for case and control patients in the initial, replication, and combined studies, using all patients and then restricted to white patients, using PLINK version 1.03 (http://pngu.mgh.harvard.edu/~purcell/plink/).27 For the initial study, the association between polymorphisms and CFLD was assessed using Cochran-Armitage trend tests.28 All tests were 2-sided; unadjusted P values are reported, along with P values that were significant (P < .05) after Bonferroni correction adjusting for 9 tests. Analyses were performed using all patients and then restricted to white patients.

For the replication study, the association between 2 polymorphisms and CFLD was assessed using Cochran-Armitage trend tests.28 All tests were 2-sided; unadjusted P values are reported, along with P values that were significant (P < .05) after Bonferroni correction adjusting for 9 tests. Analyses were performed using all patients and then restricted to white patients.

For the replication study, the association between 2 polymorphisms from the initial study (SERPINA1 Z allele and TGFB1 codon 10) and CFLD was assessed using Cochran-Armitage trend tests. Initial and replication samples were subsequently combined and analyzed for the SERPINA1 Z allele using Cochran-Armitage trend tests and logistic regression models. Varying levels of covariate adjustment in the logistic regression models were made for ethnicity (as a 5-level categorical variable for all samples), sex, CFTR genotype, and TGFB1 codon 10 genotype. Tests of interactions were performed to assess whether the odds of CFLD differed between male and female patients by SERPINA1 genotype. Odds ratios (ORs), corresponding 95% confidence intervals (CIs), and uncorrected P values are reported. Bonferroni correction was applied to assess overall statistical significance in the replication and combined analyses (adjusting for 2 tests in the replication and 9 tests in the combined sample). Analyses were performed separately, first using all samples and then using those from white patients only.

Analysis of variance models were used to assess whether sex, SERPINA1 Z allele, and CFTR genotype were associated with age of diagnosis of CFLD in the combined sample. Data were analyzed on all CFLD case patients with covariate adjustment for self-reported ancestry, and on white CFLD case patients with a reported age at diagnosis.

To estimate population attributable risk, we used a modified form of the classic Levin formula for population attributable fraction by replacing relative risk estimates with ORs and using the proportion of control patients carrying the Z allele as an estimate of the probability of exposure.29-31 While this estimate is not exact, given our case-control sampling design (over-sampled older patients without CFLD), this estimate should provide a reasonable approximation, owing to the modest frequency of CFLD in patients with CF (≈5%).

### RESULTS

#### Clinical Features

**Initial Study.** Characteristics of the initial group of 124 patients with CFLD and 843 patients without CFLD are shown in Table 1. The CFLD group was younger at enrollment, had more male patients, and had slightly fewer white patients. The CFTR mutations in patients with CFLD were representative of pancreatic insufficient in North American and European patients with CF (Table 1).1 The prevalence of meconium ileus at birth in patients with CFLD (18.2%) is comparable to that in the control group and typical for the general CF population with pancreatic insufficient CFTR.3

Abnormalities in biochemical tests of the liver (aspartate transaminase, alanine transaminase, and γ-glutamyl transferase) were not predictive of CFLD and also were not markers of hepatocellular synthetic dysfunction, such as international normalized ratio and levels of serum albumin (Table 2). Preoperative assessment of data available from a subset of patients (n = 22) who underwent liver transplantation (n = 43) showed a distribution of abnormal total bilirubin and albumin values similar to that of the nontransplanted patients (Table 2).

**Replication Study.** Based on the associations for the SERPINA1 Z allele and TGFB1 codon 10 (Table 3), we enrolled additional patients with and without CFLD to test for replication (Table 4). The characteristics of the replication patients were similar to those in the initial study (Table 1), including the distribution of specific CFTR mutations, prevalence of meconium ileus (23.8%), and liver function abnormalities (Table 2 and Table 4).

### Cochran-Armitage Trend Test of Association

**Initial Study.** In the analysis of previously studied gene modifiers of liver disease in CF (Table 3), association was seen only for the SERPINA1 Z allele (OR, 4.72; 95% CI, 2.31-9.61; P = .03 × 10⁻⁴) and TGFB1 codon 10 (OR, 1.53; 95% CI, 1.16-2.03; P = 2.8 × 10⁻³). The SERPINA1 Z allele displayed association for all patients with CFLD but was more prominent in female patients. Similar results were seen when the analysis was restricted to white patients (data not shown). It is noteworthy that small effects for the nonsignificant polymorphisms would not be detected with sufficient power by this study. The genotypes and minor allele frequencies for genetic variants in patients without CFLD were similar to those previously reported.5-7,18-21

**Replication Study.** The association was replicated for the SERPINA1 Z allele (OR, 3.42; 95% CI, 1.54-7.59; P = 1.4 × 10⁻³) (Table 5), but the association was more prominent in male patients, in contrast to the initial study. Similar results were seen when analyses were restricted to white patients (data not shown). The association of the TGFB1 codon 10 variant was not replicated for all patients (Table 5) or for male or female patients when analyzed separately (data not shown).

**Initial Plus Replication Study.** When the initial and replication populations were combined for analysis using
Cochran-Armitage trend tests, the SERPINAI Z allele displayed very robust association with CFLD (OR, 4.17; 95% CI, 2.46-7.05; \( P = 9.9 \times 10^{-8} \)); similar evidence for association was observed in analyses restricted to white patients in the initial plus replication populations (data not shown).

**Hardy-Weinberg Equilibrium**

All polymorphisms had genotype distributions consistent with Hardy-Weinberg equilibrium (\( P > 0.01 \)) in the initial, replication, and combined samples, irrespective of how samples were partitioned according to ethnicity and CFLD status.

**Logistic Regression for the Z Allele**

We combined the initial and replication groups and performed logistic regression for the SERPINAI Z allele to estimate the odds of CFLD, adjusting for the covariates of ethnicity, sex, and CFTR genotype. Results remained consistent when using all patients or white patients only, with respect to statistical significance estimates (\( P = 1.5 \times 10^{-8} \) or \( P = 6.3 \times 10^{-8} \), respectively) as well as OR estimates (OR, 5.04; 95% CI, 2.88-8.83 for all patients vs OR, 4.87; 95% CI, 2.75-8.64 for white patients only). In addition, we saw no evidence for interactions between sex and the SERPINAI Z allele in all patients or only white patients. Similar results were obtained by logistic regression adjusting only for ethnicity in the complete sample and in models that additionally adjusted for the TGFB1 codon 10 genotype.

**Population Attributable Risk**

We combined the initial and replication groups and estimated the population attributable risk for the Z allele to be 6.7% (white patients only, 6.6%). A similar result was obtained using another method of estimating the probability of exposure, namely the average Z allele frequency of patients from North America, Europe, and Australia (data not shown).

**Age at Diagnosis of CFLD**

The mean and median age of recognition (diagnosis) of portal hypertension in all patients with CFLD was approximated by the mean and median ages for patients with CFLD diagnosed prior to liver transplantation.

---

**Table 1. Initial Study: Characteristics of Patients With Cystic Fibrosis With or Without Severe Liver Disease**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Liver Disease (n = 124)</th>
<th>No Liver Disease (n = 843)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at enrollment, mean (SD), [median], y</td>
<td>19.8 (7.3) [18.8]</td>
<td>26.7 (9.6) [23.3]</td>
</tr>
<tr>
<td>Male sex, No. (%)</td>
<td>88 (71.0)</td>
<td>462 (54.8)</td>
</tr>
<tr>
<td>White race, No. (%)</td>
<td>115 (92.7)</td>
<td>822 (97.5)</td>
</tr>
<tr>
<td>Genotype, No. (%)(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/P</td>
<td>100 (80.7)</td>
<td>836 (99.2)</td>
</tr>
<tr>
<td>P/PFS</td>
<td>5 (4.0)</td>
<td>0</td>
</tr>
<tr>
<td>PS/PS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P/unknown</td>
<td>16 (12.9)</td>
<td>7 (0.8)</td>
</tr>
<tr>
<td>Unknown/unknown</td>
<td>3 (2.4)</td>
<td>0</td>
</tr>
<tr>
<td>Meconium ileus, No. (%)(^b)</td>
<td>22 (18.2)</td>
<td>68 (16.5)</td>
</tr>
<tr>
<td>Age of diagnosis of portal hypertension, y(^c)</td>
<td>10.3 (5.9)</td>
<td>NA</td>
</tr>
<tr>
<td>Mean (range)</td>
<td>10 (0.5-26)</td>
<td>NA</td>
</tr>
<tr>
<td>Portal hypertension documented by, No. (%)(^d)</td>
<td>120 (97.1)</td>
<td>NA</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varies (esophageal, rectal)</td>
<td>93 (74.6)</td>
<td>NA</td>
</tr>
<tr>
<td>Hypersplenism(^e)</td>
<td>69 (52.7)</td>
<td>NA</td>
</tr>
</tbody>
</table>

**Table 2. Summary of Clinical Laboratory Values for Patients With Cystic Fibrosis and Severe Liver Disease**

<table>
<thead>
<tr>
<th>Measure</th>
<th>No. of Patients(^a)</th>
<th>% of Patients</th>
<th>Normal Range</th>
<th>Upper Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartate transaminase</td>
<td></td>
<td></td>
<td></td>
<td>&gt;1 x to ≤2 x</td>
<td>&gt;2 x</td>
</tr>
<tr>
<td>Range of values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>122</td>
<td>23.0</td>
<td>31-60 U/L</td>
<td>&gt;60 U/L</td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td>132</td>
<td>16.7</td>
<td>47.7</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td>Alanine transaminase</td>
<td></td>
<td></td>
<td></td>
<td>&gt;1 x to ≤2 x</td>
<td>&gt;2 x</td>
</tr>
<tr>
<td>Range of values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>116</td>
<td>47.4</td>
<td>35.3</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td>133</td>
<td>44.4</td>
<td>37.6</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>γ-Glutamyl transferase</td>
<td></td>
<td></td>
<td></td>
<td>&gt;1 x to ≤2 x</td>
<td>&gt;2 x</td>
</tr>
<tr>
<td>Range of values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>110</td>
<td>24.5</td>
<td>16.4</td>
<td>59.1</td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td>114</td>
<td>19.3</td>
<td>28.1</td>
<td>52.6</td>
<td></td>
</tr>
<tr>
<td>Total bilirubin(^b)</td>
<td></td>
<td></td>
<td></td>
<td>&gt;1 x to ≤2 x</td>
<td>&gt;2 x</td>
</tr>
<tr>
<td>Range of values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>106</td>
<td>66.0</td>
<td>18.9</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td>111</td>
<td>70.3</td>
<td>17.1</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>Albumin(^c)</td>
<td></td>
<td></td>
<td></td>
<td>&gt;1 x to ≤2 x</td>
<td>&gt;2 x</td>
</tr>
<tr>
<td>Range of values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>104</td>
<td>49.0</td>
<td>42.3</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td>120</td>
<td>56.7</td>
<td>39.2</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: NA, not applicable; PI, pancreatic exocrine insufficient mutation; PS, pancreatic exocrine sufficient mutation.

\(^a\) CFTR mutations for patients with cystic fibrosis and liver disease in initial study: DF508/DF508 (56.5%), DF508/PI (19.4%), DF508/unknown (10.5%), PIP (4.8%), PI/unknown (2.4%).

\(^b\) CFTR mutations for patients with cystic fibrosis and liver disease in initial study: DF508/DF508 (56.5%), DF508/PI (19.4%), DF508/unknown (10.5%), PIP (4.8%), PI/unknown (2.4%).

\(^c\) CFTR mutations for patients with cystic fibrosis and liver disease in initial study: DF508/DF508 (56.5%), DF508/PI (19.4%), DF508/unknown (10.5%), PIP (4.8%), PI/unknown (2.4%).

\(^d\) Data available from 121 patients with cystic fibrosis and liver disease aged 0-28 years and 411 patients with cystic fibrosis and no liver disease aged 0-28 years.

\(^e\) Data available from 122 cystic fibrosis patients with liver disease and no liver disease.

\(^f\) Some patients had portal hypertension confirmed by more than one method; all patients tested had findings compatible with multifocal cirrhosis.

\(^g\) As defined by platelet count less than 100,000 cells/μL; data available for 110 patients.

---

©2009 American Medical Association. All rights reserved.

(Reprinted) JAMA, September 9, 2009—Vol 302, No. 10 1079.
mately 10 to 11 years, and 90% of patients had CFLD diagnosed before age 20 years. Male patients had an earlier age of diagnosis of CFLD than female patients for all patients (males, 8.5 years; females, 10.5 years; P = 0.007), and for white patients (males, 9.7 years; females, 11.5 years; P = 0.03). Age at diagnosis of CFLD was not associated with the presence of the SERPINA1 Z allele, CFTR genotype, or self-reported ancestry.

Liver Histopathology
A patient with CFLD carrying a single copy of the SERPINA1 Z allele accumulated SERPINA1 protein within hepatocytes adjoining the fibrosed portal tracts, but SERPINA1 protein was not seen in hepatocytes of a patient with CFLD and without the Z allele.

COMMENT
Previous studies have suggested that genetic polymorphisms may act as modifiers of liver disease in cystic fibrosis, but these studies were small and phenotyping did not address the development of severe (biliary) cirrhosis associated with portal hypertension. To increase the likelihood of identifying genetic modifiers relevant to the development of severe liver disease in CF, we performed 2 sequential studies in different groups of patients. The initial study involved 5 candidate genes that had previously been studied as modifiers of CF liver disease, and the replication study tested for confirmation of SERPINA1 Z allele and TGFB1 codon 10 variant as modifiers of severe liver disease in CF.

This study had 3 key design features. First, we used rigorous criteria to identify patients with CF and portal hypertension (cases), reflecting hepatobiliary cirrhosis, and key source documents were reviewed independently by 2 experts to confirm the CFLD phenotype. Second, for patients without CFLD (controls), we studied only those 15 years or older, to exclude younger patients with predisposition to develop CFLD. Third, we enrolled a large number of patients with and without CFLD to improve statistical power. For the initial study, approximately 50% of the case patients were from outside North America, and 93% were self-described as white; all control patients were from North America. For the replication (second) study, a slightly greater percentage of case patients were from North America (63% vs 50%), and some control patients (10%) were from outside North America.

Genetic analyses of the initial cohort showed that a single copy of the SERPINA1 Z allele and each additional copy of the TGFB1 codon 10 C allele were associated with significantly increased odds of CFLD. In the replication study, the SERPINA1 Z allele was confirmed as a modifier of liver disease in CF, whereas the TGFB1

Table 3. Initial Study: Prevalence of Polymorphic Genotypes in Patients With Cystic Fibrosis With or Without Severe Liver Disease

<table>
<thead>
<tr>
<th>Gene/Variant</th>
<th>SNP No.</th>
<th>Liver Disease</th>
<th>Genotype</th>
<th>No. (%) With Genotype</th>
<th>Genotype</th>
<th>No. (%) With Genotype</th>
<th>Genotype</th>
<th>No. (%) With Genotype</th>
<th>Genotype</th>
<th>No. Genotyped</th>
<th>P Value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERPINA1 S allele (T2313A)</td>
<td>rs17580</td>
<td>Yes</td>
<td>AA</td>
<td>90 (88.2)</td>
<td>AT</td>
<td>12 (11.8)</td>
<td>TT</td>
<td>0</td>
<td>102</td>
<td>.16</td>
<td>1.59 (0.83-3.05)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>AA</td>
<td>619 (92.6)</td>
<td>AT</td>
<td>49 (7.3)</td>
<td>TT</td>
<td>1 (0.1)</td>
<td>669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs28929474</td>
<td>Yes</td>
<td>GG</td>
<td>110 (88.7)</td>
<td>AG</td>
<td>14 (11.3)</td>
<td>AA</td>
<td>0</td>
<td>124</td>
<td>3.3 x 10^{-3}</td>
<td>4.72 (2.31-9.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>GG</td>
<td>741 (97.4)</td>
<td>AG</td>
<td>20 (2.6)</td>
<td>AA</td>
<td>0</td>
<td>761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE D/I deletion (T2313A)</td>
<td>NA</td>
<td>Yes</td>
<td>DD</td>
<td>43 (35.0)</td>
<td>DI</td>
<td>54 (43.9)</td>
<td>II</td>
<td>26 (21.1)</td>
<td>123</td>
<td>.45</td>
<td>1.11 (0.85-1.44)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>DD</td>
<td>250 (37.3)</td>
<td>DI</td>
<td>300 (44.7)</td>
<td>II</td>
<td>121 (18.0)</td>
<td>671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSTP1 (A1375G)</td>
<td>rs1695</td>
<td>Yes</td>
<td>AA</td>
<td>40 (41.7)</td>
<td>AG</td>
<td>41 (42.7)</td>
<td>GG</td>
<td>15 (15.6)</td>
<td>96</td>
<td>.32</td>
<td>1.17 (0.86-1.61)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>AA</td>
<td>316 (43.7)</td>
<td>AG</td>
<td>331 (45.8)</td>
<td>GG</td>
<td>76 (10.5)</td>
<td>723</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBL2 O</td>
<td>NA</td>
<td>Yes</td>
<td>AA</td>
<td>69 (59.0)</td>
<td>AO</td>
<td>42 (35.9)</td>
<td>OO</td>
<td>6 (5.1)</td>
<td>117</td>
<td>.92</td>
<td>0.98 (0.70-1.38)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>AA</td>
<td>384 (57.9)</td>
<td>AO</td>
<td>248 (37.4)</td>
<td>OO</td>
<td>31 (4.7)</td>
<td>663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XA/O</td>
<td>NA</td>
<td>Yes</td>
<td>Other</td>
<td>95 (82.6)</td>
<td>XA/O</td>
<td>14 (12.2)</td>
<td>O/O</td>
<td>6 (5.2)</td>
<td>115</td>
<td>.50</td>
<td>1.14 (0.78-1.65)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Other</td>
<td>567 (85.5)</td>
<td>XA/O</td>
<td>65 (9.8)</td>
<td>O/O</td>
<td>31 (4.7)</td>
<td>663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFB1 Promoter (C-509T)</td>
<td>rs1800469</td>
<td>Yes</td>
<td>CC</td>
<td>44 (39.6)</td>
<td>CT</td>
<td>52 (46.9)</td>
<td>TT</td>
<td>15 (13.5)</td>
<td>111</td>
<td>.01</td>
<td>1.45 (1.07-1.95)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>CC</td>
<td>413 (49.6)</td>
<td>CT</td>
<td>356 (42.7)</td>
<td>TT</td>
<td>64 (7.7)</td>
<td>833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codon 10 (C297T)</td>
<td>rs1800470</td>
<td>Yes</td>
<td>TT</td>
<td>33 (29.5)</td>
<td>CT</td>
<td>54 (48.2)</td>
<td>CC</td>
<td>25 (22.3)</td>
<td>112</td>
<td>2.8 x 10^{-3}</td>
<td>1.53 (1.16-2.03)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>TT</td>
<td>343 (40.7)</td>
<td>CT</td>
<td>390 (46.4)</td>
<td>CC</td>
<td>109 (12.9)</td>
<td>842</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codon 25 (G74C)</td>
<td>rs1800471</td>
<td>Yes</td>
<td>GG</td>
<td>93 (83.8)</td>
<td>GC</td>
<td>18 (16.2)</td>
<td>CC</td>
<td>0</td>
<td>111</td>
<td>.71</td>
<td>1.10 (0.66-1.85)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>GG</td>
<td>592 (85.9)</td>
<td>GC</td>
<td>92 (13.4)</td>
<td>CC</td>
<td>5 (0.7)</td>
<td>689</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; NA, not applicable; OR, odds ratio; SNP, single-nucleotide polymorphism.

1 See “Methods” for gene accession numbers.
2 For each additional copy of the minor allele.
3 Homozygous form of the S allele.
4 Heterozygous form of the S allele.
5 Homozygous form of the Z allele.
6 Heterozygous form of the Z allele.
7 Bonferroni-corrected P > 0.05.
8 Calibrated using Cochran-Armitage trend test of comparisons of the genotypes.
9 Heterozygous form of the S allele.
10 Heterozygous form of the Z allele.
11 Bonferroni-corrected P > 3.0 x 10^{-3}.
The mechanism of the SERPINA1 Z allele as an adverse modifier of liver disease in patients with CF likely reflects the dual stimulation of hepatic stellate cells by inflammatory mediators from CFTR-deficient cholangiocytes as well as hepatocytes containing the misfolded SERPINA1 protein, ie, these inflammatory stimuli induce hepatic stellate cells to migrate and proliferate in the bile duct regions in a profibrogenic manner.10,13,16,34-36 Bile duct ligation with resultant cholestasis induces more activated stellate cells and fibrosis in the liver of homozygous transgenic PiZ vs wild-type mice, which is compatible with this proposed mechanism of the Z allele as an adverse modifier in CF.37 Further studies are necessary to better define the pathogenesis of the Z allele in CFLD.

The Z allele variant causes misfolding of the SERPINA1 protein, which results in an accumulation of protein in hepatocytes. The most prevalent CFTR mutation, DF508, is also a misfolding mutation, expressed predominantly in cholangiocytes in the liver.8,13,34-36 However, it is unlikely that folding mutations in CFTR and SERPINA1 induce an amplified, adverse effect on the prosemosomal degradation pathway, because these 2 genes are predominantly expressed in 2 different cell types in the liver.8,13,34-36 Furthermore, heterozygosity for the Z allele is associated with the risk and progression of a variety of liver diseases, including cryptogenic cirrhosis, biliary atresia, viral hepatitis, alcoholic cirrhosis, and non-alcoholic fatty liver disease.37,38

By studying a large number of patients with CF and with well-defined severe liver disease and portal hypertension, we confirmed and refuted some previous observations and discovered new information about the clinical features of these patients. We confirmed that (1) CFLD is more common and is diagnosed earlier in male individuals; (2) specific CFTR mutations do not correlate with the risk and progression of CFLD; and (3) the presence of liver disease and portal hypertension are associated with disease severity. As defined by platelet count less than 100,000 cells/µL, data available for 117 patients.

Table 5. Replication Study: Prevalence of Polymorphic Genotypes in Patients With Cystic Fibrosis With or Without Severe Liver Disease

<table>
<thead>
<tr>
<th>Gene/Variant</th>
<th>SNP No.</th>
<th>Liver Disease Genotype</th>
<th>Geno-</th>
<th>No. (%) With Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERPINA1 Z allele (G4627A)</td>
<td>rs28929474</td>
<td>Yes</td>
<td>GG</td>
<td>127 (93.4)</td>
<td>AG</td>
<td>9 (6.6)</td>
<td>AA</td>
<td>0</td>
<td>136</td>
<td>1.4 X 10^{-8}</td>
<td>3.42 (1.54-7.59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>GG</td>
<td>1062 (98.0)</td>
<td>AG</td>
<td>22 (2.0)</td>
<td>AA</td>
<td>0</td>
<td>1084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFBI codon 10 (C297T)</td>
<td>rs1800470</td>
<td>Yes</td>
<td>TT</td>
<td>290 (38.3)</td>
<td>CT</td>
<td>62 (46.2)</td>
<td>CC</td>
<td>21 (15.7)</td>
<td>134</td>
<td>.96</td>
<td>1.01 (0.77-1.31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>TT</td>
<td>290 (38.3)</td>
<td>CT</td>
<td>139 (46.1)</td>
<td>CC</td>
<td>118 (15.6)</td>
<td>757</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism.
*Calculated using Cochran-Armitage trend test of comparisons of the genotypes.
*For each additional copy of the minor allele.
*Heterozygous form of the Z allele.
*Homozygous form of the Z allele.
*Bonferroni-corrected P = 2.8 X 10^{-8}.

©2009 American Medical Association. All rights reserved.
with CFDL, but CFTR mutations with residu- nal function (pancreatic sufficient mu- tations) are uncommon in individuals with CFDL; (3) hepatic synthetic function is preserved for long durations in most patients with CFDL; (4) thrombo- cytopenia due to hypersplenism is common in individuals with portal hyper- tension due to CFDL; (5) liver biochemical tests are poorly predictive of severe liver disease and portal hyper- tension in CF; and (6) severe liver dis- ease with portal hypertension develops in pediatric patients by age 10 to 12 years. In addition, we made a striking observation about the age dis- tribution of diagnosis of severe liver dis- ease, whereby the prevalence of severe liver disease does not increase in adults with CF, despite progressive increase in longevity; more than 90% of the pa- tients with CFDL in our study were di- agnosed by age 20 years, with a mean (and median) age of diagnosis of 10 to 11 years. We were not able to confirm any association of meconium ileus with CFDL, as has been reported in one study; however, this association was not confirmed by a large study in our group. The prevalence of meconium ileus in individuals with portal hyper- tension attributable risk among patients with pancreatic exocrine insufficiency. 1

In summary, we studied 2 large popu- lations of patients with CF with and without liver disease and portal hyper- tension to test genes previously studied as modifiers of liver disease. Of these candidate genes, only the SERPIN A1 Z allele was significantly associated with CFDL and portal hypertension. This polymorphism is relatively uncom- mon in CF (= 2.2% of patients with CF are carriers), but the OR for association with severe liver disease is relatively high (≈5) for the contribution of a genetic modifier to a mendelian disorder. Moreover, the estimated population attributable risk among patients with CF is 6.7%. From a clinical per- spective, a rare variant with large pen- trance (such as the Z allele) may be more useful than a common variant with low penetrance in screening for ge- netic polymorphisms. The identifica- tion of the SERPIN A1 Z allele as the first marker for the development of severe liver disease in CF illustrates the possi- bility of identifying CF risk factors early in life, conceptually as a secondary com- ponent of neonatal screening after the diagnosis of CF is confirmed.

Author Affiliations: Cystic Fibrosis/Pulmonary Re- search and Treatment Center (Drs Bartlett and Knowles, Ms Pac, and Mr Hannah) and Department of Ge- netics (Mr Wang and Dr Lange), School of Medicine, and Department of Biostatistics, School of Public Health (Mr Wang and Drs Zou, Wright, and Lange), Univer- sity of North Carolina at Chapel Hill, for Mo- lecular Biology and Pathology, Laboratory Corpora- tion of America, Research Triangle Park, North Carolina (Dr Friedman); Division of Gastroenterology, Hepa- tology and Nutrition (Drs Ling and Durie), Pediatric Laboratory Medicine (Drs Halim), Child Health Evalutative Sciences (Drs Corey), Genetics and Genome Bi- ology (Drs Zeielski and Dorfman), and Physiology and Experimental Medicine (Drs Druie), The Hospital for Sick Children, and the University of Toronto (Drs Ling, Co- rey, and Durie); Toronto, Ontario, Canada; Adult Cys- tic Fibrosis Centre, Prince Charles Hospital, Chem- side, Queensland, Australia (Dr Bell); Children's Research Centre, Our Lady's Children's Hospital, Crum- lin (Drs Bourke and Rowland) and University College Dublin School of Medicine and Medical Science (Dr Rowland), Dublin, Ireland; CEINGE-Advanced Bio- technologies and Department of Biochemistry and Medical Biotechnology, University of Naples Fe- derico II, Naples, Italy (Drs Castaldo and Salvatore); Cystic Fibrosis Centre, Azienda Ospedaliera di Ve- rona, Verona, Italy (Drs Castellani and Cipoll); CF Cen- ter, Fondazione IRCCS Ospedale Maggiore Poli- clinico, Mangiagalli e Regina Elena, University of Milan, Milan, Italy (Dr C. Colombo); Department of Pedia- trics, Pulmonary Section, University of Nebraska Medi- cal Center, Omaha (Dr J. Colombo); Service d'Hépatologie Pédiatrique, Centre Hospitalier Universi- taire de Bicêtre, Le Kremlin-Bicêtre Cedex, France (Dr Debray); Cystic Fibrosis Center, La Plata Children's Hos- pital, La Plata, Buenos Aires, Argentina (Dr Fernan- dez); the Pediatric Hepato-Gastroenterology Nutrition Unit, Necker-Enfants Malades Hospital, Paris, France (Dr Laclalle); Departments of Biology and Medi- cal Genetics (Dr Macek) and Pediatrics (Dr Zemkova), Charles University and University Hospital Motol, Prague, Czech Republic; Department of Paediatric Gas- troenterology, Academic Unit of Child Health, Uni- versity of Sheffield, Sheffield, United Kingdom (Dr Tay- lor); Queensland Children's Respiratory Centre, Royal Children's Hospital, Brisbane, Queensland, Australia (Dr Wainwright); Department of Pediatric Gastroen- terology, Hadassah Medical Organization, Jerusa- lem, Israel (Dr Wilshanski); Department of Pathol- ogy, University of Virginia, Charlottesville, Virginia (Dr Silverman); and Departments of Pediatrics and Ge- netics, Case Western Reserve University, Cleveland, Ohio (Dr Drumm).

Author Contributions: Dr Knowles had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Bartlett, Friedman, Pace, Ling, Pac, Zou, Silverman, Lange, Durie, Knowles. Acquisition of data: Bartlett, Friedman, Pace, Bell, Bourke, Castaldo, Castellani, Cipoll, C. Colombo, J. Colombo, Debray, Fernandez, Laclalle, Macek, J. Corallo, Rowland, Salvatore, Taylor, Wainwright, Wilshanski, Zemkova, Hannah, Corey, Zeielski, Dorfman, Drumm, Durie, Knowles. Analysis and interpretation of data: Bartlett, Friedman, Pace, Ling, Pace, Salvatore, Hannah, Phillips, Wang, Zou, Wright, Lange, Durie, Knowles.

Obtained funding: Friedman, Bell, Rowland, Zeielski, Drumm, Durie, Knowles. Administrative, technical, or material support: Bartlett, Friedman, Pace, Bell, Bourke, Castaldo, Castellani, Cipoll, C. Colombo, J. Colombo, Debray, Laclalle, Rowland, Salvatore, Taylor, Wainwright, Wilshanski, Hannah, Phillips, Corey, Zeielski, Dorfman, Zou, Wright, and Durie. Study supervision: Bartlett, Pace, Lange, Knowles. Drs Durie and Knowles jointly directed the project.

Financial Disclosures: None reported.

Funding/Support: This study was supported by grants from the Cystic Fibrosis Foundation (SILVER2000, KNOWLE00400, DRUM004P0, DRUM00400); the National Institutes of Health (NIH R01GM071475, NIH/NIDDK DK066638, CTRR R000046, CTSU UL1RR025747); the Prince Charles Hospital Foundation; the OHWC/CIHR Fellowship; the Czech Minis- try of Health (VZFNW00004203, N5948B/3); MIUR, Rome, Italy, and Regione Campania, Italy; a fellow- ship in Rare Diseases from The Health Research Board Grant (RFRD-05-07); Genome Canada through the Ontario Genomics Institute (2004-OGI-3-05); the Lloyd Carr-Harris Foundation; and the Canadian Cys- tic Fibrosis Foundation.

Role of the Sponsor: The funding organizations had no role in the design and conduct of the study; the collection, management, analysis, and the interpre- tation of the data; or the preparation, review, or ap- proval of the manuscript.

GENETIC MODIFIERS OF LIVER DISEASE IN CYSTIC FIBROSIS

Konstan, K.S. McCoy, F. Royce, S. Bartosik, P.A. Vau-
thy, M.L. Vauthy; Oklahoma: J.C. Kramer, S. Hensel, Pe-
nsylvania: C.R. Perez, N.J. Thomas, J.C. Hess, D.S.
 Holmes, C.F. Turlington, R. Rubenstein, C. Springer, E.
 Kerem, Y. Yahav, Y. Bujanover; V. Raia, M. Cipolli, C.
 Castellani; Japan: T. Nomura, S. Ito, M. Kojima, Y.
 Iwasaki, N. Harada, S. Nakasone, S. Kamada; and H.
 Kamei, H. Inoue, M. Yonezawa, T. Kessoku, T. Ito, S.
 Maruyama, S. Kato, H. Fujita, K. Mino, K. Hasegawa,
 S. Maeda, T. Tanaka, S. Kayahara, S. Kato, M. Kiyoshi, Y.
 Hasegawa, S. Koga, T. Hasegawa, S. Kato, K. Nakamura,
 S. Kato, S. Kayahara, T. Tanaka, S. Kato, M. Kiyoshi, Y.
 Hasegawa, S. Koga, and K. Mino, S. Nakasone, S. Ito, M.
 Kojima, Y. Iwasaki, N. Harada, S. Kamada, H. Kamei;
 Australia: J. Rivlin, E. Picard, H. Blau, M. Wilschanski;


2. Mekus F, Ballmann M, Bransvold I, Bijman J, Veen-C de, H. Tummler B. Categories of deltaF508 homozygous cystic fibrosis twin and sibling pairs with distinct phenot-
otypic characteristics. Twin Res. 2000;3(4):277-
293.

3. Sontag MK, Accurso FJ. Gene modifiers in pediat-
51:5-36.

4. Vanscoy LL, Blackman SM, Collaco JM, et al. Heri-


teraction between a novel TGFβ1 haplotype and CFTR genotype is associated with improved lung function in cystic fibrosis. Hum Mol Genet. 2008;17(14):
2228-2237.

3104-1049.

1857-1871.


pression in cystic fibrosis could be modulated by ge-
tic factors different from the cystic fibrosis trans-
294-297.

124(3):393-399.

16. Fanerachak AP. Hepatobiliary complications of cys-
231-239.


19. Arkwright PD, Pravica V, Geraghty PJ, et al. End-
124(3):393-399.

20. Wang D, Cohn JA, Strong TV, Picciotto MR, et al. The use of population attributable fraction to de-
termine sample size for case-control studies of gene-
environment interaction. Epidemiology. 2003;

21. Levin ML, Bertell RR. Simple estimation of popu-

22. Yang Q, Khoury MJ, Friedman JM, Flanders WD. On the use of population attributable fraction to de-
termine sample size for case-control studies of gene-
environment interaction. Epidemiology. 2003;

23. de Serres FJ, Blanco I, Fernandez-Bustillo E. PI S alpha1-antitrypsin deficiency worldwide: a re-
view of existing genetic epidemiological data. Mon-

24. de Serres FJ, Blanco I, Fernandez-Bustillo E. Ge-
etic epidemiology of alpha 1-antitrypsin deficiency in North America and Australia/New Zealand: Aus-

25. Eigenbrodt ML, McCashland TM, Dy RM, Clark J, Galati J. Heterozygous alpha 1-antitrypsin pheno-


28. Lawless MW, Greene CM, Mulgrew A, Taggart CC, O’Neill SJ, McElvaney NG. Activation of endo-
plasmic reticulum-specific stress responses associ-
ated with the conformational disease Z alpha 1-antitrypsin deficiency. J Immunol. 2004;172(9):
5722-5726.

29. Perlmuter DH. Pathogenesis of chronic liver in-

30. Mencin A, Seki E, Osawa Y, et al. Alpha 1-an-
titrypsin Z protein (PIZ) increases hepatic fibrosis in a murine model of cholestasis. Hepatology. 2007;
46(5):1443-1452.


32. Sliker MG, Deckers-Koenen JM, Uitterwaal CS, van der Ent CK, Bouwen RH. Risk factors for the develop-