0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Research Letters |

Real-Time Myoelectric Control of Knee and Ankle Motions for Transfemoral Amputees FREE

Levi J. Hargrove, PhD; Ann M. Simon, PhD; Robert D. Lipschutz, CP; Suzanne B. Finucane, MS, PTA; Todd A. Kuiken, MD, PhD
[+] Author Affiliations

Letters Section Editor: Jody W. Zylke, MD, Senior Editor.

More Author Information
JAMA. 2011;305(15):1542-1544. doi:10.1001/jama.2011.465.
Text Size: A A A
Published online

To the Editor: We recently investigated real-time neural control of artificial arms using targeted muscle reinnervation and pattern recognition algorithms.1 However, lower limb amputees outnumber upper limb amputees.2 There has been increased interest in neurally controlled powered lower limb prosthetics because they can restore activities that require joint power to be generated.35 We have extended our research to lower limb amputees.

Four transfemoral amputee participants (3 men, 1 woman; mean [SD] age, 50 [9] years; mean [SD] time since amputation, 18 [16.2] years) and 4 intact-limb control participants (2 men, 2 women; mean [SD] age, 29 [2.4] years) were recruited between September 2009 and January 2011 at the Rehabilitation Institute of Chicago. The Northwestern University institutional review board approved the study, and written informed consent was obtained from all participants.

Individuals were seated with bipolar electrodes placed on the skin's surface over 9 muscles: semitendinosus, sartorius, tensor fasciae latae, adductor magnus, gracilis, vastus medialis, rectus femoris, vastus lateralis, and long head of the biceps femoris. Muscle sites were localized based on a combination of normal anatomical locations and palpation6 and confirmed by viewing electromyographic (EMG) signals during test contractions (see: interactive illustration of lower extremity neuromuscular anatomy). Software1 instructed participants to complete the following motions: knee flexion and extension, plantar flexion and dorsiflexion, internal and external tibial rotation, internal and external femoral rotation, and relaxation. Twelve seconds of EMG data were collected for each motion from which the computer learned the participants' EMG signal patterns using pattern recognition algorithms.1 Twelve additional seconds of EMG data were collected for each motion to compute classification accuracy (the percentage of motions correctly predicted by the algorithm). Participants completed virtual environment real-time tests that required them to replicate motions displayed on the computer screen. Trials were successfully completed when the user moved the virtual limb through the complete range of motion that required a minimum of 1 second and were terminated after 15 seconds. There were 2 tests: one completed with a 2−degrees of freedom (DOF) virtual prosthesis and the other a 4-DOF virtual prosthesis (see video of virtual prosthesis testing). Motions were repeated 9 times during 2-DOF tests but only 3 times during 4-DOF tests because more motions were tested.

Performance metrics included classification accuracy, motion completion time, and motion completion percentage.1 Motion completion time is the time taken from the start of the trial until the virtual limb moved through the complete range of motion. Motion completion percentage is the number of successfully completed motions divided by the total number of trials.

All participants could control both the knee and ankle in the presence of real-time feedback during the 2-DOF test (Figure). All participants also demonstrated 4-DOF control, but with lower performance metrics, particularly for overall motion completion percentage for amputees (Table).

Place holder to copy figure label and caption
Figure. Cumulative Motion Completion Percentages
Graphic Jump Location

Results from controlling 2 degrees of freedom (knee flexion/extension and ankle plantar flexion/dorsiflexion) and 4 degrees of freedom (knee flexion/extension, femoral rotation, ankle plantar flexion/dorsiflexion, and tibial rotation). Trials were terminated after 15 seconds if unsuccessful. See video of virtual prosthesis testing.

Table Graphic Jump LocationTable. Performance Metrics for Virtual Prosthesis Testing

Although neural control of a single DOF at the knee during non–weight-bearing situations has been shown previously,3 this is to our knowledge the first demonstration of neural control of a knee and ankle. Real-time ankle control was unexpected using only EMG signals measured from thigh muscles. These results suggest that targeted muscle reinnervation may not be required to achieve non–weight-bearing control of sagittal plane knee and ankle movements. This is a preliminary study with few participants, and testing was completed in a virtual environment. We are currently modifying powered knee and ankle prostheses3,4 to implement our neural control algorithms. Whether these findings will apply when tested on physical prostheses remains to be tested.

Author Contributions: Dr Hargrove had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Hargrove, Simon, Lipschutz, Finucane, Kuiken.

Acquisition of data: Hargrove, Simon, Lipschutz, Finucane.

Analysis and interpretation of data: Hargrove, Simon.

Drafting of the manuscript: Hargrove, Simon.

Critical revision of the manuscript for important intellectual content: Lipschutz, Finucane, Kuiken.

Statistical analysis: Hargrove.

Obtained funding: Kuiken.

Administrative, technical, or material support: Hargrove, Simon, Lipschutz, Finucane.

Study supervision: Hargrove.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

Funding/Support: This work was supported by the Telemedicine and Advanced Technology Research Center (TATRC) under award W81XWH-09-2-0020. The TATRC is an office at the headquarters of the US Army Medical Research and Materiel Command; fosters research on health informatics, telemedicine and mobile health, medical training systems, and computational biology; and promotes and manages science and engineering in other key portfolios.

Role of the Sponsor: The sponsor had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript.

Kuiken TA, Li G, Lock BA,  et al.  Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.  JAMA. 2009;301(6):619-628
PubMed   |  Link to Article
Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050.  Arch Phys Med Rehabil. 2008;89(3):422-429
PubMed   |  Link to Article
Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface electromyography.  IEEE Trans Biomed Eng. 2011;58(1):144-151
PubMed   |  Link to Article
Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.  Neural Netw. 2008;21(4):654-666
PubMed   |  Link to Article
Hitt JK, Sugar TG, Holgate M, Bellman R. An active foot-ankle prosthesis with biomechanical energy regeneration.  J Med Device. 2010;4(1):011003
Link to Article
Netter F. Atlas of Human Anatomy. 5th ed. Amsterdam, the Netherlands: Elsevier; 2010

Figures

Place holder to copy figure label and caption
Figure. Cumulative Motion Completion Percentages
Graphic Jump Location

Results from controlling 2 degrees of freedom (knee flexion/extension and ankle plantar flexion/dorsiflexion) and 4 degrees of freedom (knee flexion/extension, femoral rotation, ankle plantar flexion/dorsiflexion, and tibial rotation). Trials were terminated after 15 seconds if unsuccessful. See video of virtual prosthesis testing.

Tables

Table Graphic Jump LocationTable. Performance Metrics for Virtual Prosthesis Testing

References

Kuiken TA, Li G, Lock BA,  et al.  Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.  JAMA. 2009;301(6):619-628
PubMed   |  Link to Article
Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050.  Arch Phys Med Rehabil. 2008;89(3):422-429
PubMed   |  Link to Article
Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface electromyography.  IEEE Trans Biomed Eng. 2011;58(1):144-151
PubMed   |  Link to Article
Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.  Neural Netw. 2008;21(4):654-666
PubMed   |  Link to Article
Hitt JK, Sugar TG, Holgate M, Bellman R. An active foot-ankle prosthesis with biomechanical energy regeneration.  J Med Device. 2010;4(1):011003
Link to Article
Netter F. Atlas of Human Anatomy. 5th ed. Amsterdam, the Netherlands: Elsevier; 2010
CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 11

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic