We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Article |

Hypoxemia Is Associated With Mitochondrial DNA Damage and Gene Induction Implications for Cardiac Disease

Marisol Corral-Debrinski, PhD; Georges Stepien, PhD; John M. Shoffner, MD; Marie T. Lott, MA; Kirk Kanter, MD; Douglas C. Wallace, PhD
JAMA. 1991;266(13):1812-1816. doi:10.1001/jama.1991.03470130092035.
Text Size: A A A
Published online


Objective.  —Oxidative phosphorylation (OXPHOS) deficiency due to hypoxemia or other causes was hypothesized to increase oxygen radical generation, damage mitochondrial DNA (mtDNA), and reduce adenosine triphosphate synthesis, resulting in compensatory OXPHOS gene induction. Therefore, we investigated the levels of mtDNA damage and OXPHOS transcripts in normal and ischemic hearts, and then in other forms of heart disease.

Design.  —DNA was extracted from the heart and the levels of the common 4977 base pair mtDNA deletion were quantitated as an index for mtDNA damage. Total RNA was extracted from hearts and analyzed for OXPHOS transcript levels.

Results.  —In control hearts, the 4977 base pair mtDNA deletion appeared at age 40 years and reached a maximum deletion of 0.0035%. Much higher levels were found in ischemic hearts (0.02% to 0.85%), as well as in three of 10 cases with other types of heart disease (0.017% to 0.16%). The OXPHOS transcripts were increased in all diseased hearts.

Conclusion.  —Ischemic hearts have increased mtDNA damage and OXPHOS gene expression, suggesting that mtDNA damage is associated with OXPHOS deficiency. Oxidative phosphorylation defects may also play a role in some other forms of cardiac disease.(JAMA. 1991;266:1812-1816)


Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?




Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

0 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.