0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Viewpoint | Scientific Discovery and the Future of Medicine

Electronics for the Human Body

John A. Rogers, PhD, SM1
[+] Author Affiliations
1Departments of Bioengineering, Materials Science and Engineering, Mechanical Science and Engineering, Electrical and Computer Engineering, and Chemistry, University of Illinois, Urbana
JAMA. 2015;313(6):561-562. doi:10.1001/jama.2014.17915.
Text Size: A A A
Published online

Extract

This Viewpoint disucsses the melding of electronics and the human tissue to one day treat injury and disease.

The human body is soft, curvilinear, and continuously evolving; modern electronic devices are rigid, planar, and physically static. Recent research has yielded a complete set of advanced materials, manufacturing approaches, and design layouts that eliminates this profound mismatch in properties. The resulting devices can intimately integrate onto or into the human body for diagnostic, therapeutic, or surgical function with important unique capabilities in biomedical research and clinical medicine. These emerging technologies have strong potential to improve human health and to enhance the understanding of living systems. They fall into 3 categories—soft, injectable, and bioreabsorbable electronics—each demonstrated in extensive animal studies and several in initial human trials. The Figure presents images of bioelectronic devices.

Figures in this Article

Topics

electronic

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

First Page Preview

View Large
First page PDF preview

Figures

Place holder to copy figure label and caption
Figure.
Images of Biocompatible Electronic Devices

A, Inflated balloon catheter equipped with arrays of sensors for pressure, flow, and contact along with actuators for ablation therapy and light-emitting diodes for optical characterization. B, Three-dimensional membrane wrapped around the entire surface of the heart for cardiac electrotherapy. C, Actively multiplexed sheet of electronics laminated onto the surface of the brain for high-resolution electrocorticography. D, Wireless electronics mounted on the skin for continuous, multimodal monitoring of physiological status. E, Injectable optoelectronic system threaded through the eye of a sewing needle and wrapped around its shaft to highlight the small dimensions and flexible mechanics. F, Bioresorbable electronic circuit, partially dissolving in a drop of water. All of the constituent materials dissolve at controlled rates into harmless end products when exposed to biofluids.

Graphic Jump Location

Tables

References

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

3,252 Views
11 Citations
×

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Multimedia

Author Reading

audio player

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
brightcove.createExperiences();