0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Contribution |

Long-term Renal Outcomes in Patients With Primary Aldosteronism FREE

Leonardo A. Sechi, MD; Marileda Novello, MD; Roberta Lapenna, MD; Sara Baroselli, MD; Elisa Nadalini, MD; Gian Luca Colussi, MD; Cristiana Catena, MD, PhD
[+] Author Affiliations

Author Affiliations: Hypertension Unit, Division of Internal Medicine, Department of Experimental and Clinical Pathology and Medicine, University of Udine, Udine, Italy.

More Author Information
JAMA. 2006;295(22):2638-2645. doi:10.1001/jama.295.22.2638.
Text Size: A A A
Published online

Context Experimental animal studies indicate that exposure to increased aldosterone levels might result in renal damage, but the clinical evidence supporting this role of aldosterone is preliminary.

Objective To determine the long-term outcome of renal function in patients with primary aldosteronism after surgical or medical treatment.

Design, Setting, and Participants Prospective study conducted at an Italian university medical center among a consecutive sample of 50 patients who were diagnosed as having primary aldosteronism between January 1994 and December 2001 and who were followed up for a mean of 6.4 years after treatment with adrenalectomy or spironolactone. Patients with primary aldosteronism were compared with 100 patients with essential hypertension, matched for severity and duration of hypertension. All patients were treated with antihypertensive drugs to reach a target blood pressure of less than 140/90 mm Hg.

Main Outcome Measures Primary outcome measures were rates of change of glomerular filtration rate and albuminuria during follow-up. Detection of new-onset microalbuminuria and restoration of normal albumin excretion during follow-up were considered as secondary outcomes.

Results At baseline, glomerular filtration rate and albuminuria were higher in patients with primary aldosteronism than those with essential hypertension. The mean blood pressure during the study was 136/81 mm Hg in the primary aldosteronism group and 137/81 mm Hg in the essential hypertension group. Glomerular filtration rate and albuminuria declined during the initial 6-month period in both groups, with a change that was significantly greater (P<.001 for both variables) in patients with primary aldosteronism. Subsequent rate of decline of glomerular filtration was comparable in the 2 groups, whereas albuminuria did not progress in the remainder of the follow-up. Restoration of normal albumin excretion from microalbuminuria was significantly more frequent in primary aldosteronism than in essential hypertension (P = .02).

Conclusion In the majority of patients in this study, primary aldosteronism was characterized by partially reversible renal dysfunction in which elevated albuminuria is a marker of a dynamic rather than structural renal defect.

Primary aldosteronism is a form of endocrine hypertension characterized by high blood pressure, hypokalemia, suppressed plasma renin activity, and inappropriate aldosterone secretion. Recent studies have reported a greater frequency of primary aldosteronism among patients with hypertension than the previously accepted prevalence of approximately 1%.1,2 Such increased frequency may be the result of more effective identification of this condition due to widespread use of the aldosterone-renin ratio as a screening test.3 Although primary aldosteronism is considered correctable with either removal of an adrenal adenoma or administration of mineralocorticoid receptor antagonists, in many cases, hypertension may persist after treatment.4

Primary aldosteronism has long been considered a relatively benign form of hypertension associated with low incidence of organ complications.5 This has been generally ascribed to the suppression of the renin-angiotensin axis that occurs as a result of an aldosterone-generated volume expansion.6 Recent experimental studies, however, suggest that long-term exposure to increased aldosterone levels might result in cardiovascular7 and renal8,9 structural damage, independent of the blood pressure level. Cardiovascular surrogate end points, including endothelial dysfunction, structural changes in resistance vessels, left ventricular hypertrophy, and impaired diastolic function, have been demonstrated in patients with primary aldosteronism,10 and indirect evidence of aldosterone-related damage has been obtained from clinical trials conducted in patients with heart failure who were treated with mineralocorticoid receptor antagonists, with significant decrease in the mortality rate.11,12 The clinical evidence of a role of aldosterone as a potential contributor to renal dysfunction is weaker than that which has emerged for the cardiovascular system and has been summarized in thorough reviews.9,13,14 Studies performed in patients with diabetic nephropathy1517 and chronic kidney disease18,19 suggest a beneficial effect of aldosterone antagonists on urinary protein excretion, and a recent study has demonstrated increased albuminuria in patients with primary aldosteronism compared with patients with essential hypertension.20 This study was designed to test the hypothesis that the excess renal damage found in primary aldosteronism is mainly related to a functional and reversible hemodynamic adaptation of the kidney and that treatment of primary aldosteronism can improve renal dysfunction, reflecting correction of this functional abnormality. We investigated the short-term and long-term outcomes of renal function in patients with primary aldosteronism who were followed up after either surgical or medical treatment.

Corresponding Author: Leonardo A. Sechi, MD, Clinica Medica, Università di Udine, Piazzale S. Maria della Misericordia 1, 33100 Udine, Italy (sechi@uniud.it).

Author Contributions: Dr Sechi had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Sechi and Catena contributed equally to this work.

Study concept and design: Sechi, Catena.

Acquisition of data: Sechi, Novello, Lapenna, Baroselli, Nadalini, Colussi, Catena.

Analysis and interpretation of data: Sechi, Novello, Lapenna, Baroselli, Nadalini, Colussi, Catena.

Drafting of the manuscript: Sechi, Catena.

Critical revision of the manuscript for important intellectual content: Sechi, Novello, Lapenna, Baroselli, Nadalini, Colussi, Catena.

Statistical analysis: Sechi, Catena.

Obtained funding: Sechi, Novello, Colussi, Catena.

Administrative, technical, or material support: Sechi, Novello, Lapenna, Baroselli, Nadalini, Colussi, Catena.

Study supervision: Sechi, Novello, Lapenna, Baroselli, Nadalini, Colussi, Catena.

Financial Disclosures: None reported.

Funding/Support: This work was supported by research grants from the Italian Ministry of the University and Scientific and Technologic Research to Drs Sechi and Catena and by research grants from the Italian Society of Hypertension to Drs Novello and Colussi.

Role of the Sponsors: The research sponsors had no role in the design and conduct of the study, in the collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.

Plouin PF, Amar L, Chatellier G.COMETE-Conn Study Group.  Trends in the prevalence of primary aldosteronism, aldosterone-producing adenomas, and surgically correctable aldosterone-dependent hypertension.  Nephrol Dial Transplant. 2004;19:774-777
PubMed   |  Link to Article
Mulatero P, Stowasser M, Loh KC.  et al.  Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents.  J Clin Endocrinol Metab. 2004;89:1045-1050
PubMed   |  Link to Article
Gordon RD. The challenge of more robust and reproducible methodology in screening for primary aldosteronism.  J Hypertens. 2004;22:251-255
PubMed   |  Link to Article
Sawka AM, Young WF Jr, Thompson GB.  et al.  Primary aldosteronism: factors associated with normalization of blood pressure after surgery.  Ann Intern Med. 2001;135:258-261
PubMed   |  Link to Article
Conn JW, Knopf RF, Nesbit RM. Clinical characteristics of primary aldosteronism from an analysis of 145 cases.  Am J Surg. 1964;107:159-172
PubMed   |  Link to Article
Laragh JH. Vasoconstriction-volume analysis for understanding and treating hypertension: the use of renin and aldosterone profiles.  Am J Med. 1973;55:261-274
PubMed   |  Link to Article
Rocha R, Funder JW. The pathophysiology of aldosterone in the cardiovascular system.  Ann N Y Acad Sci. 2002;970:89-100
PubMed   |  Link to Article
Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat.  J Clin Invest. 1996;98:1063-1068
PubMed   |  Link to Article
Hollenberg NK. Aldosterone in the development and progression of renal injury.  Kidney Int. 2004;66:1-9
PubMed   |  Link to Article
Rossi G, Boscaro M, Ronconi V, Funder JW. Aldosterone as a cardiovascular risk factor.  Trends Endocrinol Metab. 2005;16:104-107
PubMed   |  Link to Article
Pitt B, Zannad F, Remme WJ.  et al. Randomized Aldactone Evaluation Study Investigators.  The effect of spironolactone on morbidity and mortality in patients with severe heart failure.  N Engl J Med. 1999;341:709-717
PubMed   |  Link to Article
Pitt B, Remme W, Zannad F.  et al.  Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction.  N Engl J Med. 2003;348:1309-1321
PubMed   |  Link to Article
Ibrahim HN, Hostetter TH. Aldosterone in progressive renal disease.  Semin Nephrol. 2001;21:573-579
PubMed   |  Link to Article
Epstein M. Aldosterone as a mediator of progressive renal disease: pathogenetic and clinical implications.  Am J Kidney Dis. 2001;37:677-688
PubMed   |  Link to Article
Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy.  Hypertension. 2003;41:64-68
PubMed   |  Link to Article
Schjoedt KJ, Rossing K, Juhl TR.  et al.  Beneficial impact of spironolactone in diabetic nephropathy.  Kidney Int. 2005;68:2829-2836
PubMed   |  Link to Article
Epstein M, Buckalew V, Altamirano J, Roniker B, Krause S, Kleiman J. Eplerenone reduces proteinuria in type II diabetes mellitus: implications for aldosterone involvement in the pathogenesis of renal dysfunction.  J Am Coll Cardiol. 2002;39:249A
Link to Article
Epstein M. Aldosterone receptor blockade and the role of eplerenone: evolving perspectives.  Nephrol Dial Transplant. 2003;18:1984-1992
PubMed   |  Link to Article
Bianchi S, Bigazzi R, Campese VM. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study.  Am J Kidney Dis. 2005;46:45-51
PubMed   |  Link to Article
Ribstein J, Du Cailar G, Fesler P, Mimran A. Relative glomerular hyperfiltration in primary aldosteronism.  J Am Soc Nephrol. 2005;16:1320-1325
PubMed   |  Link to Article
Sechi LA, Kronenberg F, De Carli S.  et al.  Association of serum lipoprotein(a) levels and apolipoprotein(a) size polymorphism with target-organ damage in arterial hypertension.  JAMA. 1997;277:1689-1695
PubMed   |  Link to Article
Sechi LA, Zingaro L, Catena C, Casaccio D, De Marchi S. Relationship of fibrinogen levels and hemostatic abnormalities with organ damage in hypertension.  Hypertension. 2000;36:978-985
PubMed   |  Link to Article
Ferrari P, Shaw SG, Nicod J, Saner E, Nussberger J. Active renin versus plasma renin activity to define aldosterone-to-renin ratio for primary aldosteronism.  J Hypertens. 2004;22:377-381
PubMed   |  Link to Article
Seelig HP. The Jaffe reaction with creatinine: reaction product and general reaction conditions.  Z Klin Chem Klin Biochem. 1969;7:581-585
PubMed
Hofman W, Guder W. Preanalytical and analytical factors involved in the determination of urinary immunoglobulin G, albumin, alpha 1-microglobin and retinol binding protein using the Behring nephelometer system.  Lab Med. 1989;13:470-478
Sechi LA, Zingaro L, Catena C, Perin A, De Marchi S, Bartoli E. Lipoprotein(a) and apolipoprotein(a) isoforms and proteinuria in patients with moderate renal failure.  Kidney Int. 1999;56:1049-1057
PubMed   |  Link to Article
Kimura G, Saito F, Kojima S.  et al.  Renal function curve in patients with secondary forms of hypertension.  Hypertension. 1987;10:11-15
PubMed   |  Link to Article
Laird NM, Ware JH. Random-effects models for longitudinal data.  Biometrics. 1982;38:963-974
PubMed   |  Link to Article
Uhrenholt TR, Schjerning J, Hansen PB.  et al.  Rapid inhibition of vasoconstriction in renal afferent arterioles by aldosterone.  Circ Res. 2003;93:1258-1266
PubMed   |  Link to Article
Arima S, Kohagura K, Xu HL.  et al.  Endothelium-derived nitric oxide modulates vascular action of aldosterone in renal arteriole.  Hypertension. 2004;43:352-357
PubMed   |  Link to Article
Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study.  J Gerontol. 1976;31:155-163
PubMed   |  Link to Article
Berl T, Katz FH, Henrich WL, de Torrente A, Schrier RW. Role of aldosterone in the control of sodium excretion in patients with advanced chronic renal failure.  Kidney Int. 1978;14:228-235
PubMed   |  Link to Article
Hene RJ, Boer P, Koomans HA, Dorhout Mees EJ. Plasma aldosterone concentrations in chronic renal disease.  Kidney Int. 1982;21:98-101
PubMed   |  Link to Article
Beevers DG, Brown JJ, Ferriss JB.  et al.  Renal abnormalities and vascular complications in primary aldosteronism: evidence of tertiary hyperaldosteronism.  Q J Med. 1976;45:401-410
PubMed
Nishimura M, Uzu T, Fujii T.  et al.  Cardiovascular complications in patients with primary aldosteronism.  Am J Kidney Dis. 1999;33:261-266
PubMed   |  Link to Article
Oelkers W, Diederich S, Bahr V. Primary hyperaldosteronism without suppressed renin due to secondary hypertensive kidney damage.  J Clin Endocrinol Metab. 2000;85:3266-3270
PubMed   |  Link to Article
ACE Inhibitors in Diabetic Nephropathy Trialist Group.  Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? a meta-analysis of individual patient data.  Ann Intern Med. 2001;134:370-379
PubMed   |  Link to Article
Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.  N Engl J Med. 2001;345:870-878
PubMed   |  Link to Article
Epstein M, Campese VM. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on renal function.  Am J Kidney Dis. 2005;45:2-14
PubMed   |  Link to Article

Figures

Tables

References

Plouin PF, Amar L, Chatellier G.COMETE-Conn Study Group.  Trends in the prevalence of primary aldosteronism, aldosterone-producing adenomas, and surgically correctable aldosterone-dependent hypertension.  Nephrol Dial Transplant. 2004;19:774-777
PubMed   |  Link to Article
Mulatero P, Stowasser M, Loh KC.  et al.  Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents.  J Clin Endocrinol Metab. 2004;89:1045-1050
PubMed   |  Link to Article
Gordon RD. The challenge of more robust and reproducible methodology in screening for primary aldosteronism.  J Hypertens. 2004;22:251-255
PubMed   |  Link to Article
Sawka AM, Young WF Jr, Thompson GB.  et al.  Primary aldosteronism: factors associated with normalization of blood pressure after surgery.  Ann Intern Med. 2001;135:258-261
PubMed   |  Link to Article
Conn JW, Knopf RF, Nesbit RM. Clinical characteristics of primary aldosteronism from an analysis of 145 cases.  Am J Surg. 1964;107:159-172
PubMed   |  Link to Article
Laragh JH. Vasoconstriction-volume analysis for understanding and treating hypertension: the use of renin and aldosterone profiles.  Am J Med. 1973;55:261-274
PubMed   |  Link to Article
Rocha R, Funder JW. The pathophysiology of aldosterone in the cardiovascular system.  Ann N Y Acad Sci. 2002;970:89-100
PubMed   |  Link to Article
Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat.  J Clin Invest. 1996;98:1063-1068
PubMed   |  Link to Article
Hollenberg NK. Aldosterone in the development and progression of renal injury.  Kidney Int. 2004;66:1-9
PubMed   |  Link to Article
Rossi G, Boscaro M, Ronconi V, Funder JW. Aldosterone as a cardiovascular risk factor.  Trends Endocrinol Metab. 2005;16:104-107
PubMed   |  Link to Article
Pitt B, Zannad F, Remme WJ.  et al. Randomized Aldactone Evaluation Study Investigators.  The effect of spironolactone on morbidity and mortality in patients with severe heart failure.  N Engl J Med. 1999;341:709-717
PubMed   |  Link to Article
Pitt B, Remme W, Zannad F.  et al.  Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction.  N Engl J Med. 2003;348:1309-1321
PubMed   |  Link to Article
Ibrahim HN, Hostetter TH. Aldosterone in progressive renal disease.  Semin Nephrol. 2001;21:573-579
PubMed   |  Link to Article
Epstein M. Aldosterone as a mediator of progressive renal disease: pathogenetic and clinical implications.  Am J Kidney Dis. 2001;37:677-688
PubMed   |  Link to Article
Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy.  Hypertension. 2003;41:64-68
PubMed   |  Link to Article
Schjoedt KJ, Rossing K, Juhl TR.  et al.  Beneficial impact of spironolactone in diabetic nephropathy.  Kidney Int. 2005;68:2829-2836
PubMed   |  Link to Article
Epstein M, Buckalew V, Altamirano J, Roniker B, Krause S, Kleiman J. Eplerenone reduces proteinuria in type II diabetes mellitus: implications for aldosterone involvement in the pathogenesis of renal dysfunction.  J Am Coll Cardiol. 2002;39:249A
Link to Article
Epstein M. Aldosterone receptor blockade and the role of eplerenone: evolving perspectives.  Nephrol Dial Transplant. 2003;18:1984-1992
PubMed   |  Link to Article
Bianchi S, Bigazzi R, Campese VM. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study.  Am J Kidney Dis. 2005;46:45-51
PubMed   |  Link to Article
Ribstein J, Du Cailar G, Fesler P, Mimran A. Relative glomerular hyperfiltration in primary aldosteronism.  J Am Soc Nephrol. 2005;16:1320-1325
PubMed   |  Link to Article
Sechi LA, Kronenberg F, De Carli S.  et al.  Association of serum lipoprotein(a) levels and apolipoprotein(a) size polymorphism with target-organ damage in arterial hypertension.  JAMA. 1997;277:1689-1695
PubMed   |  Link to Article
Sechi LA, Zingaro L, Catena C, Casaccio D, De Marchi S. Relationship of fibrinogen levels and hemostatic abnormalities with organ damage in hypertension.  Hypertension. 2000;36:978-985
PubMed   |  Link to Article
Ferrari P, Shaw SG, Nicod J, Saner E, Nussberger J. Active renin versus plasma renin activity to define aldosterone-to-renin ratio for primary aldosteronism.  J Hypertens. 2004;22:377-381
PubMed   |  Link to Article
Seelig HP. The Jaffe reaction with creatinine: reaction product and general reaction conditions.  Z Klin Chem Klin Biochem. 1969;7:581-585
PubMed
Hofman W, Guder W. Preanalytical and analytical factors involved in the determination of urinary immunoglobulin G, albumin, alpha 1-microglobin and retinol binding protein using the Behring nephelometer system.  Lab Med. 1989;13:470-478
Sechi LA, Zingaro L, Catena C, Perin A, De Marchi S, Bartoli E. Lipoprotein(a) and apolipoprotein(a) isoforms and proteinuria in patients with moderate renal failure.  Kidney Int. 1999;56:1049-1057
PubMed   |  Link to Article
Kimura G, Saito F, Kojima S.  et al.  Renal function curve in patients with secondary forms of hypertension.  Hypertension. 1987;10:11-15
PubMed   |  Link to Article
Laird NM, Ware JH. Random-effects models for longitudinal data.  Biometrics. 1982;38:963-974
PubMed   |  Link to Article
Uhrenholt TR, Schjerning J, Hansen PB.  et al.  Rapid inhibition of vasoconstriction in renal afferent arterioles by aldosterone.  Circ Res. 2003;93:1258-1266
PubMed   |  Link to Article
Arima S, Kohagura K, Xu HL.  et al.  Endothelium-derived nitric oxide modulates vascular action of aldosterone in renal arteriole.  Hypertension. 2004;43:352-357
PubMed   |  Link to Article
Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study.  J Gerontol. 1976;31:155-163
PubMed   |  Link to Article
Berl T, Katz FH, Henrich WL, de Torrente A, Schrier RW. Role of aldosterone in the control of sodium excretion in patients with advanced chronic renal failure.  Kidney Int. 1978;14:228-235
PubMed   |  Link to Article
Hene RJ, Boer P, Koomans HA, Dorhout Mees EJ. Plasma aldosterone concentrations in chronic renal disease.  Kidney Int. 1982;21:98-101
PubMed   |  Link to Article
Beevers DG, Brown JJ, Ferriss JB.  et al.  Renal abnormalities and vascular complications in primary aldosteronism: evidence of tertiary hyperaldosteronism.  Q J Med. 1976;45:401-410
PubMed
Nishimura M, Uzu T, Fujii T.  et al.  Cardiovascular complications in patients with primary aldosteronism.  Am J Kidney Dis. 1999;33:261-266
PubMed   |  Link to Article
Oelkers W, Diederich S, Bahr V. Primary hyperaldosteronism without suppressed renin due to secondary hypertensive kidney damage.  J Clin Endocrinol Metab. 2000;85:3266-3270
PubMed   |  Link to Article
ACE Inhibitors in Diabetic Nephropathy Trialist Group.  Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? a meta-analysis of individual patient data.  Ann Intern Med. 2001;134:370-379
PubMed   |  Link to Article
Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.  N Engl J Med. 2001;345:870-878
PubMed   |  Link to Article
Epstein M, Campese VM. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on renal function.  Am J Kidney Dis. 2005;45:2-14
PubMed   |  Link to Article

Letters

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 120

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections