0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Review | Clinician's Corner

Sex Differences of Endogenous Sex Hormones and Risk of Type 2 Diabetes:  A Systematic Review and Meta-analysis FREE

Eric L. Ding, BA; Yiqing Song, MD, ScD; Vasanti S. Malik, MSc; Simin Liu, MD, ScD
[+] Author Affiliations

Author Affiliations: Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (Drs Song and Liu and Mr Ding); Departments of Epidemiology (Dr Liu and Mr Ding) and Nutrition (Mssrs Ding and Malik), Harvard School of Public Health, Boston; and Program on Genomics and Nutrition, Department of Epidemiology, UCLA School of Public Health, Los Angeles, Calif (Dr Liu).

More Author Information
JAMA. 2006;295(11):1288-1299. doi:10.1001/jama.295.11.1288.
Text Size: A A A
Published online

Context Inconsistent data suggest that endogenous sex hormones may have a role in sex-dependent etiologies of type 2 diabetes, such that hyperandrogenism may increase risk in women while decreasing risk in men.

Objective To systematically assess studies evaluating the association of plasma levels of testosterone, sex hormone–binding globulin (SHBG), and estradiol with risk of type 2 diabetes.

Data Sources Systematic search of EMBASE and MEDLINE (1966-June 2005) for English-language articles using the keywords diabetes, testosterone, sex-hormone-binding-globulin, and estradiol; references of retrieved articles; and direct author contact.

Study Selection From 80 retrieved articles, 43 prospective and cross-sectional studies were identified, comprising 6974 women and 6427 men and presenting relative risks (RRs) or hormone levels for cases and controls.

Data Extraction Information on study design, participant characteristics, hormone levels, and risk estimates were independently extracted by 2 investigators using a standardized protocol.

Data Synthesis Results were pooled using random effects and meta-regressions. Cross-sectional studies indicated that testosterone level was significantly lower in men with type 2 diabetes (mean difference, −76.6 ng/dL; 95% confidence interval [CI], −99.4 to −53.6) and higher in women with type 2 diabetes compared with controls (mean difference, 6.1 ng/dL; 95% CI, 2.3 to 10.1) (P<.001 for sex difference). Similarly, prospective studies showed that men with higher testosterone levels (range, 449.6-605.2 ng/dL) had a 42% lower risk of type 2 diabetes (RR, 0.58; 95% CI, 0.39 to 0.87), while there was suggestion that testosterone increased risk in women (P = .06 for sex difference). Cross-sectional and prospective studies both found that SHBG was more protective in women than in men (P≤.01 for sex difference for both), with prospective studies indicating that women with higher SHBG levels (>60 vs ≤60 nmol/L) had an 80% lower risk of type 2 diabetes (RR, 0.20; 95% CI, 0.12 to 0.30), while men with higher SHBG levels (>28.3 vs ≤28.3 nmol/L) had a 52% lower risk (RR, 0.48; 95% CI, 0.33 to 0.69). Estradiol levels were elevated among men and postmenopausal women with diabetes compared with controls (P = .007).

Conclusions This systematic review indicates that endogenous sex hormones may differentially modulate glycemic status and risk of type 2 diabetes in men and women. High testosterone levels are associated with higher risk of type 2 diabetes in women but with lower risk in men; the inverse association of SHBG with risk was stronger in women than in men.

Figures in this Article

Quiz Ref IDDiabetes mellitus currently afflicts approximately 21 million Americans, 90% to 95% of whom have type 2 diabetes.1 An important sex difference is recognized in which type 2 diabetes is a more powerful risk factor for coronary heart disease mortality in women than in men, ie, diabetes increases the risk of coronary heart disease mortality by approximately 3.5-fold in women but only 2-fold in men (P = .008 for sex difference).2 Furthermore, evidence suggests a sex difference such that the positive association between adiposity and risk of type 2 diabetes is stronger for women compared with men.3

Previous studies have suggested the role of endogenous sex hormones in the development of type 2 diabetes.4 Hyperandrogenic conditions, such as polycystic ovarian syndrome (PCOS), have been strongly associated with glucose intolerance and insulin resistance in women,514 while hypoandrogenism has been linked with insulin resistance1326 and adiposity14,15,18,23,25,2731 in men. Sex-dependent relationships may also exist for estradiol and risk of diabetes. Several studies have observed positive associations between estradiol and insulin resistance in women5,10,14,32 but not in men,14,15,26,32,33 while results from other studies were conflicting.24,3436 Moreover, sex hormone–binding globulin (SHBG), a serum protein that affects free circulating hormone levels, has been inversely associated with insulin resistance and type 2 diabetes in both sexes,20,23,26,34,37,38 though multiple studies have reported no inverse associations in men.3942

To comprehensively assess the relations between levels of endogenous sex hormones and risk of type 2 diabetes and potential heterogeneity by sex, we conducted a systematic review and meta-analysis of available prospective and cross-sectional studies relating testosterone, SHBG, and estradiol levels with risk of type 2 diabetes.

Study Selection

We conducted a comprehensive literature search of EMBASE and MEDLINE from 1966 through June 2005 using the keywords and Medical Subject Headings diabetes combined with testosterone, sex-hormone-binding-globulin, and estradiol. Additional studies were retrieved via references of articles and direct contact of authors deemed to possess relevant data. The search was restricted to English-language articles and studies of human participants. In the first round of screening (n = 844), 764 articles were excluded for at least 1 of the following criteria: nonhuman study (398 articles), type 1 diabetes (153 articles), gestational diabetes (34 articles), children (45 articles), reviews (110 articles), editorials (7 articles), or case reports (48 articles) (Figure 1). In a second round of screening retrieving full texts (n = 80), 37 articles were excluded: type 1 diabetes (8 articles), unknown diabetes type (2 articles), nonserum hormone data (2 articles), no controls (5 articles), results of combined sexes (5 articles), no results stratified for diabetes (14 articles), or multiple publication (1 article). Attempts to contact authors of relevant articles published after 1995 for additional information yielded 3 unanswered, 2 successful but authors unable to provide de novo analysis results, and 1 successful in providing stratified data for participants with type 2 diabetes. Our search strategy and inclusion criteria resulted in a total of 43 articles being included in the meta-analysis. Of these, 41 were available for examining sex differences in the effects of testosterone on type 2 diabetes, 32 for examining sex differences in the effects of SHBG, and 14 for examining sex differences in the effects of estradiol. In total, these studies included 6427 men and 6974 women (Table 1 and Table 2).

Figure 1. Summary of Article Selection Process
Graphic Jump Location

*Sum of specific excluded studies greater than total due to overlapping classifications of excluded studies.

Table Graphic Jump LocationTable 1. Characteristics of Prospective Studies of Testosterone, Sex Hormone–Binding Globulin, and Estradiol
Table Graphic Jump LocationTable 2. Characteristics of Cross-Sectional Studies of Testosterone, Sex Hormone–Binding Globulin, and Estradiol
Data Extraction

Using a standardized data extraction form, 2 independent investigators (E.L.D. and V.S.M) extracted and tabulated all data. Discrepancies were resolved via referencing the original article and via group discussions. Information extracted included lead author; publication year; population; sex; menopausal status; study design; length of follow-up if prospective; race (proportion white); diagnostic criteria of diabetes categorized by differential definitions of fasting blood glucose level (National Diabetes Data Group 1979 or World Health Organization 1985 cut point of ≥140 mg/dL [7.8 mmol/L] vs American Diabetes Association 1997 or World Health Organization 1999 cut point of ≥126 mg/dL [7.0 mmol/L]); number of cases and controls; age; body mass index (BMI); waist-hip ratio (WHR); internal adjustment or matching (internal control) for age, BMI, or WHR between cases and controls; mean hormone/SHBG levels in cases and controls; unit of measurement; SD of hormone/SHBG levels (derived if SEs were reported); relative risks (RRs) of type 2 diabetes comparing various levels of hormone/SHBG if available; and confidence intervals (CIs) or P values, from which variances were derived. In the very few studies reporting only interquartile ranges, an approximate SD was derived. For free testosterone, additional data were collected on the method of free hormone assessment, excluding studies that used the less reliable method of direct radioimmunoassay7177 and attempting to pool only those studies that used the same methods of free hormone measurement. Due to the high degree of natural premenopausal fluctuations, estradiol analysis was restricted to men and postmenopausal women. Results for men and women were extracted as separate populations.

Statistical Analyses

For prospective studies, RRs were used as measures of association between hormone levels and incident type 2 diabetes. For 1 prospective study reporting no incident cases of type 2 diabetes in a study group, the conventional half-integer correction was applied to calculate RRs and variances. For studies reporting RR for per-unit change in hormone levels, the equivalent RR of an upper-half vs lower-half dichotomized comparison was derived from the trend RR comparison of the 75th vs 25th percentile. Relative risks of the reported dichotomy in each study were pooled via DerSimonian and Laird random-effects models.78

For cross-sectional studies, the primary summary measure of association was the overall random-effects mean difference in hormone/SHBG levels between cases and controls. To minimize chance findings from individual studies, conservative 99% CIs were expressed for individual studies, while 95% CIs were presented for summary estimates. Additionally, meta-regressions79 using conservative robust SEs were conducted to examine whether differences in age, BMI, race, and diabetes diagnosis criteria influenced associations and explained heterogeneity across studies. Results from unadjusted meta-regressions were checked to ensure unity with primary DerSimonian and Laird results. P values for sex differences were calculated using 2-sample z tests. As determined a priori, men and women were analyzed separately unless results clearly showed no sex dimorphism. Insufficient numbers of sex-stratified populations and inconsistent methods precluded the meta-analysis of free hormones in this study. To assess the presence of publication bias, we assessed relative symmetry of individual study estimates around the overall estimate using Begg funnel plots80 in which log RRs and mean differences were plotted against their corresponding SEs, stratified by sex. All analyses were conducted using STATA 8.2 (StataCorp, College Station, Tex); P<.05 was considered statistically significant.

The descriptive characteristics of included studies are presented in Table 1 and Table 2.5,8,11,13,14,23,28,32,34,35,3970

Testosterone

The body of testosterone studies included 3825 men and 4795 women from 36 cross-sectional study populations and 368 cases from 7 prospective study populations. Quiz Ref IDIn cross-sectional studies, women with type 2 diabetes had significantly higher levels of testosterone compared with controls (mean difference, 6.1 ng/dL; 95% CI, 2.3 to 10.1 [0.21 nmol/L; 95% CI, 0.08 to 0.35]), whereas men with type 2 diabetes had significantly lower levels of plasma total testosterone (mean difference, −76.6 ng/dL; 95% CI, −99.4 to −53.6 [−2.66 nmol/L; 95% CI, −3.45 to −1.86]) (Figure 2). This sex difference for testosterone was highly significant (P<.001 for interaction). These sex-dependent findings remained significant even with adjustment for study-level differences in age, race, and diabetes diagnosis criteria, as well as internal control for BMI and WHR. While statistical power was limited in stratified analyses, no significant heterogeneity by age, menopause, diabetes criteria, or white race was found (Table 3).

Figure 2. Random-Effects Pooled Mean Difference of Testosterone Levels Between Type 2 Diabetes Cases and Controls, Men and Women
Graphic Jump Location

Negative values represent lower levels among type 2 diabetes cases. Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. To convert nmol/L to ng/dL, divide by 0.0347. CI indicates confidence interval.
*European population.
†Melanesian population.
‡Independent population of type 2 diabetes cases and controls among women with acanthosis nigricans.

Table Graphic Jump LocationTable 3. Mean Differences of Testosterone and Sex Hormone–Binding Globulin Between Type 2 Diabetes Cases and Controls*

Analysis of mean difference in prospective studies of men also found lower testosterone levels among incident cases (mean difference, −71.5 ng/dL; 95% CI, −116.4 to −26.8 [−2.48 nmol/L; 95% CI, −4.04 to −0.93]). Moreover, those men in the upper dichotomy of total testosterone concentration (range, 449.6-605.2 ng/dL [15.6-21.0 nmol/L]) had a 42% lower risk of type 2 diabetes (RR, 0.58; 95% CI, 0.39 to 0.87) compared with those with lower concentrations (range, 213.2-446.7 ng/dL [7.4-15.5 nmol/L]) (Figure 3). In contrast, the 1 prospective study among women found that individuals in the top quartile of total testosterone (range, 51.9-92.2 ng/dL [1.8-3.2 nmol/L]) had a nonsignificant 60% higher risk of type 2 diabetes compared with women in the bottom 3 quartiles (range, 1.2-49.0 ng/dL [0.04-1.7 nmol/L]).14 Similarly in the same study, women in the highest quartile of bioavailable testosterone had a significant 3-fold higher risk of type 2 diabetes compared with women in the bottom 3 quartiles.14 Despite limited prospective studies in women, available data suggest a sex dimorphism for the association between total testosterone and type 2 diabetes (P = .06 for sex difference). No significant publication biases were detected among sex-stratified prospective and cross-sectional analyses.

Figure 3. Random-Effects Pooled Relative Risks of Testosterone and Type 2 Diabetes from Prospective Studies in Men
Graphic Jump Location

Relative risks reported for upper dichotomy (449.6-605.2 ng/dL [15.6-21.0 nmol/L]) vs lower dichotomy (213.2-449.5 ng/dL [7.4-15.5 nmol/L]). Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. Only 1 prospective study among women (P = .06 for sex dimorphism). CI indicates confidence interval.

Sex Hormone–Binding Globulin

The body of SHBG studies included 2500 men and 4765 women from 23 cross-sectional study populations and 466 cases from 10 prospective study populations. In cross-sectional studies, a significant sex difference was found (P = .006 for interaction), such that women with type 2 diabetes had significantly lower plasma levels of SHBG than did controls (mean difference, −16.2 nmol/L; 95% CI, −20.2 to −12.2), while men with type 2 diabetes had marginally lower levels of SHBG than controls, albeit not statistically significant (mean difference, −5.07 nmol/L; 95% CI, −11.9 to 1.77) (Table 3 and Figure 4). These sex-dependent associations generally remained consistent after adjusting for study-level differences in age, race, diabetes diagnosis criteria, and internal control for BMI. Although statistical power was limited, no significant heterogeneity by these characteristics in stratified analyses were found, except for a suggestive weaker sex difference among older men and women.

Figure 4. Random-Effects Pooled Mean Difference of Sex Hormone–Binding Globulin Levels Between Type 2 Diabetes Cases and Controls, Men and Women
Graphic Jump Location

Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. Significant sex dimorphism (P<.001 for effect modification by sex). CI indicates confidence interval.
*Melanesian population.

Quiz Ref IDA stronger inverse association for SHBG among women was also seen from the pooled RR estimates in prospective studies. Women with higher levels of SHBG had an 80% lower risk of type 2 diabetes (RR, 0.20; 95% CI, 0.12 to 0.32) (>60 vs ≤60 nmol/L), while men with higher levels of SHBG had a 52% lower risk of type 2 diabetes (RR, 0.48; 95% CI, 0.34 to 0.69) (>28.3 vs ≤28.3 nmol/L) (P = .003 for sex difference) (Figure 5). Furthermore, a consistent sex difference was also observed in prospective studies using measures of mean differences in levels of SHBG, indicating a stronger inverse association for women (mean difference, −24.3 nmol/L; 95% CI, −37.3 to −11.3) than for men (mean difference, −7.16; 95% CI, −9.99 to −4.33) (P = .01 for sex difference). We did not observe any significant publication bias.

Figure 5. Random-Effects Pooled Relative Risks of Sex Hormone–Binding Globulin (SHBG) and Type 2 Diabetes from Prospective Studies
Graphic Jump Location

Relative risks reported for upper dichotomy (>60 nmol/L for women and >28.3 nmol/L for men) vs lower dichotomy. Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. Significant sex difference (P = .003 for interaction). CI indicates confidence interval.

Estradiol

The body of estradiol studies included 726 men and 658 postmenopausal women from 9 cross-sectional study populations and 219 cases from 3 prospective study populations. In cross-sectional studies, elevated levels of estradiol in type 2 diabetes were suggested among both men and postmenopausal women (mean difference, 3.5 pg/mL; 95% CI, 0.94 to 6.0 [12.8 pmol/L; 95% CI, 3.44 to 22.2]), with no apparent sex dimorphism (P = .87) (Table 4 and Figure 6). Studies internally controlled for BMI showed that estradiol was still associated with type 2 diabetes. Due to insufficient prospective data (only 1 study of each sex reporting RR), RR estimates could not be pooled. No apparent publication bias was observed.

Table Graphic Jump LocationTable 4. Mean Differences of Estradiol Between Type 2 Diabetes Cases and Controls in Cross-Sectional Studies*
Figure 6. Random-Effects Pooled Mean Difference of Estradiol Levels Between Type 2 Diabetes Cases and Controls, Men and Postmenopausal Women
Graphic Jump Location

Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. P = .87 for sex difference. To convert pmol/L to pg/mL, divide by 3.671. CI indicates confidence interval.

We observed significant sex differences for the associations between endogenous testosterone and risk of type 2 diabetes. High testosterone levels were associated with higher risk of type 2 diabetes among women, while simultaneously associated with decreased risk of type 2 diabetes among men. Our results also indicate that low plasma levels of SHBG were weakly associated with type 2 diabetes in men but strongly associated with type 2 diabetes in women. In contrast, endogenous estradiol levels may be elevated both in men and in postmenopausal women with type 2 diabetes. Inconsistencies from previous studies may be due to small sample sizes and lack of attention to sex-specific associations, as we found that much of the heterogeneity across individual studies could be explained by stratifying on sex. Further adjustment for many other potential differences in population characteristics across individual studies, including age and BMI, did not materially change the pooled estimates for the associations of testosterone and SHBG with risk of type 2 diabetes.

These findings are also corroborated by 2 other prospective studies that did not provide RRs for total testosterone levels but reported significantly higher incidence of type 2 diabetes among men with lower testosterone levels.45,47 Additionally, studies suggest that levels of testosterone are also associated with the metabolic syndrome in a similarly sex-divergent manner.26,49,81,82Quiz Ref IDThe observed sex-dimorphic associations between these hormonal biomarkers and type 2 diabetes may be explained by multiple pathways. First, endogenous hormones may influence insulin sensitivity via their effects on adiposity. Testosterone is inversely associated with adiposity in men14,15,18,23,25,2731,8385 but positively associated with adiposity in women.10,14 More importantly, clinical trials show that androgen deprivation increases adiposity and insulin resistance in men,86,87 while testosterone therapy decreases adiposity21,8894 and improves insulin sensitivity21,22,95 in obese men and in men with low testosterone levels. Specifically, a short-term trial in men showed that 250 to 500 mg/wk of intravenous testosterone decreased fat mass by 1 kg in 3 weeks,93 while a long-term trial found that a low-dose (6 mg/d) scrotal testosterone patch decreased fat mass by 3 kg in 3 years compared with placebo.88 However, exact opposite effects have been reported in women, in whom androgen therapy increases adiposity96 and antiandrogen therapy decreases adiposity.97 Moreover, the persistence of the significant associations after accounting for BMI suggests additional mechanisms apart from adiposity. This finding is consistent with emerging studies in both men and women showing that SHBG, bioavailable testosterone, and estradiol are all associated with insulin resistance and glucose levels independent of adiposity.10,98,99 Further, several clinical trials show that androgen deprivation improves insulin sensitivity in women, independent of changes in BMI,100 while testosterone therapy decreases insulin resistance in men, independent of changes in either BMI or WHR.22,95

The exact biological mechanisms for sex-dimorphic associations between testosterone and risk of type 2 diabetes remain to be determined, however. Laboratory experiments confirm that testosterone treatment impairs insulin-mediated glucose uptake in female rats,101 while androgen receptor knockout rapidly causes significant insulin resistance in male mice.102 Testosterone has also been shown to increase lipogenesis in visceral fat depots in women,103 while, in contrast, stimulating lipolysis of visceral fat depots103 and inhibiting adipocyte uptake of triglycerides in men,91,104 via possible effects on lipoprotein lipase activity. Testosterone may also influence glucose control through increasing lean body mass in men.90,105109 Further, testosterone treatment in men may reduce levels of tumor necrosis factor α,110,111 an inflammatory cytokine capable of inducing insulin resistance in both adipose and muscle tissues112114 and associated with higher risk of type 2 diabetes, either dependent115,116 or independent of adiposity.116 Sex dimorphisms in production of inflammatory cytokines117,118 and inflammatory cytokines predicting type 2 diabetes risk115,116 have also been suggested. Taken together, multiple lines of evidence from animal experiments, observational studies, and randomized trials in humans all appear to support a likely causal sex-dimorphic association between testosterone and risk of type 2 diabetes.

Increased risk of type 2 diabetes with low SHBG levels may represent the stronger effects of more bioavailable testosterone and estradiol, and thus, the sex-dependent associations of SHBG can be explained by its interactions with the sex hormones. While SHBG binds both testosterone and estradiol, it has a more than 2-fold higher affinity for binding testosterone than for binding estradiol,119 thus making SHBG a stronger marker of androgens.44 Because higher levels of SHBG lead to a decrease in levels of free testosterone, high SHBG levels are likely protective against the adverse effects of testosterone in women, whereas less free testosterone due to high SHBG levels is not protective against type 2 diabetes in men, explaining the sex-dependent association between SHBG and risk of type 2 diabetes.

The question of whether there is a direct relationship between plasma estradiol and risk of type 2 diabetes is less certain, however. Although adipose tissue is a major source of estrogen both in men and in postmenopausal women, analysis restricted to studies internally matched for BMI found that the estradiol association remained statistically significant. Nevertheless, there were no apparent sex differences in these limited studies. However, insufficient data precluded further assessment of the influence of age, menopausal timing, and different formulations of postmenopausal hormones120122 on the relation between plasma estradiol and risk of type 2 diabetes.

Quiz Ref IDFrom a clinical perspective, sex hormones may offer a new realm for prediction of diabetes risk that has long been relatively ignored, as they were thought to be only markers of adiposity, which is already well established for predicting diabetes. The consistent findings among both men and women of significant associations for testosterone, SHBG, and estradiol, even after accounting for BMI, suggest possible clinical applications of sex hormone biomarkers in potentially adding predictive risk information above and beyond obesity. Although more prospective investigations are needed to better define risk levels, the approximate dichotomy of adverse levels of testosterone and SHBG presented in the results may be important in guiding clinical risk stratification. Furthermore, the potential adverse clinical diabetes risk associated with antiandrogen therapy for men and testosterone therapy for women should also be carefully considered.

As with any meta-analysis, our study has limitations. First, all the studies included are observational, and potential selection biases and confounding may exist. Therefore, to the extent possible, studies were adjusted for traditional diabetes risk factors, and our analysis accounted for age, race, menopausal status, diabetes diagnosis criteria, BMI, and WHR. While residual confounding remains theoretically possible, the robustness of the sex-specific associations observed in multiple sensitivity analyses indicates that it is unlikely that any unknown confounder can revert highly divergent sex-specific associations. Corroboration of sex differences in multiple study designs, including randomized trials, also suggests minimal residual confounding.

Second, due to the lack of reliable data on levels of free hormones, we were unable to examine whether total or free hormone fractions were more important for estimating risk. However, recent experiments indicate that SHBG-bound hormones may also be biologically active,123,124 and thus, total concentration of plasma sex hormones may be a more robust index10 and better reflect aggregate physiological effects. Moreover, previous studies of free hormones were not pooled due to heterogeneous or unreliable methods, as laboratory experiments indicate that the free androgen index (ie, molar ratio between testosterone and SHBG) is a less than optimal index of free testosterone level,73,75 as is free testosterone level measured via direct radioimmunoassay, regarded by many experts as an invalid assay of free testosterone.7177 However, future research and clinical practice can improve on the reliability and efficiency of assessment of free sex hormones by relying on the calculation-based methods of Vermuelen et al73 and Sodergard et al,125 which have been validated in multiple populations of men and women.73,75,76,125127

Finally, characterized by chronic anovulation and hyperandrogenism, PCOS may also be partly responsible for the observed positive testosterone association in women, as there is increasing evidence that insulin resistance with compensatory hyperinsulinemia plays a role in the onset of hyperandrogenism by stimulating ovarian androgen production and by reducing levels of SHBG.128,129 Thus, women of reproductive age with PCOS may be prone to metabolic disorders and type 2 diabetes. However, no prospective studies directly link PCOS with risk of incident type 2 diabetes, and PCOS is unlikely to explain the testosterone association among postmenopausal women and populations of diabetic cases and controls both with PCOS.6,8,10,13,14,60 Furthermore, reverse causation explanation of diabetes-related hyperinsulinemia is also unlikely, as cohort studies and clinical trials establish temporality for causation. In addition, previous prospective studies have shown that testosterone, estradiol, and SHBG were all uncorrelated with baseline fasting insulin levels14,57 and that SHBG remained correlated with insulin sensitivity independent of levels of both insulin and C-peptide.37 In our analysis, the pooled mean testosterone difference of −76.6 ng/dL (95% CI, −99.4 to −53.6 [−2.66 nmol/L; 95% CI, −3.45 to −1.86]) from cross-sectional studies was highly consistent with results from prospective studies (−71.5 ng/dL; 95% CI, −116.4 to −26.8 [−2.48 nmol/L; 95% CI, −4.04 to −0.93). Consistent sex-specific SHBG results were also observed from prospective studies in men (mean difference, −7.16 nmol/L; 95% CI, −9.99 to −4.33) and women (mean difference, −24.3 nmol/L; 95% CI, −37.3 to −11.3), indicating temporality and consistency of these associations.

In conclusion, our systematic review of 43 studies comprising 6427 men and 6974 women suggests that endogenous levels of testosterone and SHBG each exhibit sex-dependent relations with risk of type 2 diabetes, such that high testosterone levels were associated with greater type 2 diabetes risk in women but lower risk in men, and also suggests that the inverse association of SHBG was stronger in women than in men. These findings highlight the importance of investigating the sex-specific etiologies of type 2 diabetes and its associated complications. Large prospective studies that comprehensively assess levels of these endogenous sex hormones are needed to further clarify their clinical predictive roles in the development of type 2 diabetes in both men and women.

Corresponding Author: Simin Liu, MD, ScD, Program on Genomics and Nutrition, Department of Epidemiology, UCLA School of Public Health, CHS 73-265, Box 951772, 650 Charles E Young Dr S, Los Angeles, CA 90095-1772 (siminliu@ucla.edu).

Author Contributions: Mr Ding and Dr Liu had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Ding, Liu.

Acquisition of data: Ding, Malik, Liu.

Analysis and interpretation of data: Ding, Song, Malik, Liu.

Drafting of the manuscript: Ding, Song, Malik, Liu.

Critical revision of the manuscript for important intellectual content: Ding, Song, Liu.

Statistical analysis: Ding, Song, Liu.

Obtained funding: Liu.

Administrative, technical, or material support: Liu.

Study supervision: Song, Liu.

Financial Disclosures: None reported.

Funding/Support: This study was funded in part by National Institutes of Health (NIH) grant DK066401-02; support for Mr Ding was provided by NIH grant CA009001-29.

Role of the Sponsor: The NIH had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; or the preparation, review, or approval of the manuscript.

Acknowledgment: We would like to thank Fang Tian, MD, MPH, Yeong-Liang Li, MD, and Emily Levitan, MS, Harvard School of Public Health, for their assistance on an early version of this project.

US Centers for Disease Control and Prevention.  National Diabetes Fact Sheet: United States 2005. Atlanta, Ga: US Dept of Health and Human Services, Centers for Disease Control and Prevention; 2005
Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies [published online ahead of print December 21, 2005].  BMJ. 2006;332:73-78
PubMed   |  Link to Article
Willett WC, Dietz WH, Colditz GA. Guidelines for healthy weight.  N Engl J Med. 1999;341:427-434
PubMed   |  Link to Article
Ford ES, Liu S. Acne in adolescence—protecting the heart but damaging the prostate later in life?  Am J Epidemiol. 2005;161:1102-1106
PubMed   |  Link to Article
Tok EC, Ertunc D, Evruke C, Dilek S. The androgenic profile of women with non-insulin-dependent diabetes mellitus.  J Reprod Med. 2004;49:746-752
PubMed
Haffner SM, Dunn JF, Katz MS. Relationship of sex hormone-binding globulin to lipid, lipoprotein, glucose, and insulin concentrations in postmenopausal women.  Metabolism. 1992;41:278-284
PubMed   |  Link to Article
Toprak S, Yonem A, Cakir B.  et al.  Insulin resistance in nonobese patients with polycystic ovary syndrome.  Horm Res. 2001;55:65-70
PubMed   |  Link to Article
Weerakiet S, Srisombut C, Bunnag P, Sangtong S, Chuangsoongnoen N, Rojanasakul A. Prevalence of type 2 diabetes mellitus and impaired glucose tolerance in Asian women with polycystic ovary syndrome.  Int J Gynaecol Obstet. 2001;75:177-184
PubMed   |  Link to Article
Ciampelli M, Fulghesu AM, Cucinelli F.  et al.  Impact of insulin and body mass index on metabolic and endocrine variables in polycystic ovary syndrome.  Metabolism. 1999;48:167-172
PubMed   |  Link to Article
Kalish GM, Barrett-Connor E, Laughlin GA, Gulanski BI. Association of endogenous sex hormones and insulin resistance among postmenopausal women: results from the Postmenopausal Estrogen/Progestin Intervention Trial.  J Clin Endocrinol Metab. 2003;88:1646-1652
PubMed   |  Link to Article
Park KH, Kim JY, Ahn CW, Song YD, Lim SK, Lee HC. Polycystic ovarian syndrome (PCOS) and insulin resistance.  Int J Gynaecol Obstet. 2001;74:261-267
PubMed   |  Link to Article
Gambineri A, Pelusi C, Manicardi E.  et al.  Glucose intolerance in a large cohort of mediterranean women with polycystic ovary syndrome: phenotype and associated factors.  Diabetes. 2004;53:2353-2358
PubMed   |  Link to Article
Andersson B, Marin P, Lissner L, Vermeulen A, Bjorntorp P. Testosterone concentrations in women and men with NIDDM.  Diabetes Care. 1994;17:405-411
PubMed   |  Link to Article
Oh JY, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study.  Diabetes Care. 2002;25:55-60
PubMed   |  Link to Article
Haffner SM, Karhapaa P, Mykkanen L, Laakso M. Insulin resistance, body fat distribution, and sex hormones in men.  Diabetes. 1994;43:212-219
PubMed   |  Link to Article
Pasquali R, Casimirri F, Cantobelli S.  et al.  Effect of obesity and body fat distribution on sex hormones and insulin in men.  Metabolism. 1991;40:101-104
PubMed   |  Link to Article
Phillips GB. Relationship between serum sex hormones and glucose, insulin and lipid abnormalities in men with myocardial infarction.  Proc Natl Acad Sci U S A. 1977;74:1729-1733
PubMed   |  Link to Article
Seidell JC, Bjorntorp P, Sjostrom L, Kvist H, Sannerstedt R. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels.  Metabolism. 1990;39:897-901
PubMed   |  Link to Article
Simon D, Preziosi P, Barrett-Connor E.  et al.  Interrelation between plasma testosterone and plasma insulin in healthy adult men: the Telecom Study.  Diabetologia. 1992;35:173-177
PubMed   |  Link to Article
Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat.  Diabetes Care. 2004;27:861-868
PubMed   |  Link to Article
Marin P, Holmang S, Jonsson L.  et al.  The effects of testosterone treatment on body composition and metabolism in middle-aged obese men.  Int J Obes Relat Metab Disord. 1992;16:991-997
PubMed
Simon D, Charles MA, Lahlou N.  et al.  Androgen therapy improves insulin sensitivity and decreases leptin level in healthy adult men with low plasma total testosterone: a 3-month randomized placebo-controlled trial.  Diabetes Care. 2001;24:2149-2151
PubMed   |  Link to Article
Pitteloud N, Mootha VK, Dwyer AA.  et al.  Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men.  Diabetes Care. 2005;28:1636-1642
PubMed   |  Link to Article
Pitteloud N, Hardin M, Dwyer AA.  et al.  Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men.  J Clin Endocrinol Metab. 2005;90:2636-2641
PubMed   |  Link to Article
Endre T, Mattiasson I, Berglund G, Hulthen UL. Low testosterone and insulin resistance in hypertension-prone men.  J Hum Hypertens. 1996;10:755-761
PubMed
Muller M, Grobbee DE, den Tonkelaar I, Lamberts SWJ, van der Schouw YT. Endogenous sex hormones and metabolic syndrome in aging men.  J Clin Endocrinol Metab. 2005;90:2618-2623
PubMed   |  Link to Article
Pasquali R, Macor C, Vicennati V.  et al.  Effects of acute hyperinsulinemia on testosterone serum concentrations in adult obese and normal-weight men.  Metabolism. 1997;46:526-529
PubMed   |  Link to Article
Chang TC, Tung CC, Hsiao YL. Hormonal changes in elderly men with non-insulin-dependent diabetes mellitus and the hormonal relationships to abdominal adiposity.  Gerontology. 1994;40:260-267
PubMed   |  Link to Article
Barrett-Connor E, Khaw KT. Endogenous sex hormones and cardiovascular disease in men: a prospective population-based study.  Circulation. 1988;78:539-545
PubMed   |  Link to Article
Vermeulen A, Kaufman JM, Giagulli VA. Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males.  J Clin Endocrinol Metab. 1996;81:1821-1826
PubMed   |  Link to Article
Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men.  J Clin Endocrinol Metab. 1994;79:997-1000
PubMed   |  Link to Article
Goodman-Gruen D, Barrett-Connor E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women.  Diabetes Care. 2000;23:912-918
PubMed   |  Link to Article
Haffner SM, Valdez RA, Mykkanen L, Stern MP, Katz MS. Decreased testosterone and dehydroepiandrosterone sulfate concentrations are associated with increased insulin and glucose concentrations in nondiabetic men.  Metabolism. 1994;43:599-603
PubMed   |  Link to Article
Sowers M, Derby C, Jannausch ML, Torrens JI, Pasternak R. Insulin resistance, hemostatic factors, and hormone interactions in pre- and perimenopausal women: SWAN.  J Clin Endocrinol Metab. 2003;88:4904-4910
PubMed   |  Link to Article
Haffner SM, Shaten J, Stern MP, Smith GD, Kuller L.MRFIT Research Group.  Low levels of sex hormone-binding globulin and testosterone predict the development of non-insulin-dependent diabetes mellitus in men.  Am J Epidemiol. 1996;143:889-897
PubMed   |  Link to Article
Christodoulakos G, Lambrinoudaki I, Panoulis C.  et al.  Serum androgen levels and insulin resistance in postmenopausal women: association with hormone therapy, tibolone and raloxifene.  Maturitas. 2005;50:321-330
PubMed   |  Link to Article
Birkeland KI, Hanssen KF, Torjesen PA, Vaaler S. Level of sex hormone-binding globulin is positively correlated with insulin sensitivity in men with type 2 diabetes.  J Clin Endocrinol Metab. 1993;76:275-278
PubMed   |  Link to Article
Lee CC, Kasa-Vubu JZ, Supiano MA. Androgenicity and obesity are independently associated with insulin sensitivity in postmenopausal women.  Metabolism. 2004;53:507-512
PubMed   |  Link to Article
Ando S, Rubens R, Rottiers R. Androgen plasma levels in male diabetics.  J Endocrinol Invest. 1984;7:21-24
PubMed
Ozata M, Oktenli C, Bingol N, Ozdemir IC. The effects of metformin and diet on plasma testosterone and leptin levels in obese men.  Obes Res. 2001;9:662-667
PubMed   |  Link to Article
Jang Y, Lee JH, Cho EY, Chung NS, Topham D, Balderston B. Differences in body fat distribution and antioxidant status in Korean men with cardiovascular disease with or without diabetes.  Am J Clin Nutr. 2001;73:68-74
PubMed
Abate N, Haffner SM, Garg A, Peshock RM, Grundy SM. Sex steroid hormones, upper body obesity, and insulin resistance.  J Clin Endocrinol Metab. 2002;87:4522-4527
PubMed   |  Link to Article
Lindstedt G, Lundberg PA, Lapidus L, Lundgren H, Bengtsson C, Bjorntorp P. Low sex-hormone-binding globulin concentration as independent risk factor for development of NIDDM: 12-yr follow-up of population study of women in Gothenburg, Sweden.  Diabetes. 1991;40:123-128
PubMed   |  Link to Article
Haffner SM, Valdez RA, Morales PA, Hazuda HP, Stern MP. Decreased sex hormone-binding globulin predicts noninsulin-dependent diabetes mellitus in women but not in men.  J Clin Endocrinol Metab. 1993;77:56-60
PubMed   |  Link to Article
Tibblin G, Adlerberth A, Lindstedt G, Bjorntorp P. The pituitary-gonadal axis and health in elderly men: a study of men born in 1913.  Diabetes. 1996;45:1605-1609
PubMed   |  Link to Article
Okubo M, Tokui M, Egusa G, Yamakido M. Association of sex hormone-binding globulin and insulin resistance among Japanese-American subjects.  Diabetes Res Clin Pract. 2000;47:71-75
PubMed   |  Link to Article
Stellato RK, Feldman HA, Hamdy O, Horton ES, McKinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts Male Aging Study.  Diabetes Care. 2000;23:490-494
PubMed   |  Link to Article
Rosmond R, Wallerius S, Wanger P, Martin L, Holm G, Bjorntorp P. A 5-year follow-up study of disease incidence in men with an abnormal hormone pattern.  J Intern Med. 2003;254:386-390
PubMed   |  Link to Article
Laaksonen DE, Niskanen L, Punnonen K.  et al.  Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men.  Diabetes Care. 2004;27:1036-1041
PubMed   |  Link to Article
Daubresse JC, Meunier JC, Wilmotte J, Luyckx AS, Lefebvre PJ. Pituitary-testicular axis in diabetic men with and without sexual impotence.  Diabete Metab. 1978;4:233-237
PubMed
Shahwan MM, Spathis GS, Fry DE, Wood PJ, Marks V. Differences in pituitary and testicular function between diabetic patients on insulin and oral anti-diabetic agents.  Diabetologia. 1978;15:13-17
PubMed   |  Link to Article
Phillips GB. Evidence for hyperestrogenemia as the link between diabetes mellitus and myocardial infarction.  Am J Med. 1984;76:1041-1048
PubMed   |  Link to Article
Small M, MacRury S, Beastall GH, MacCuish AC. Oestradiol levels in diabetic men with and without a previous myocardial infarction.  Q J Med. 1987;64:617-623
PubMed
Defay R, Papoz L, Barny S, Bonnot-Lours S, Caces E, Simon D.CALedonia DIAbetes Mellitus (CALDIA) Study Group.  Hormonal status and NIDDM in the European and Melanesian populations of New Caledonia: a case-control study.  Int J Obes Relat Metab Disord. 1998;22:927-934
PubMed   |  Link to Article
Semple CG, Gray CE, Beastall GH. Androgen levels in men with diabetes mellitus.  Diabet Med. 1988;5:122-125
PubMed   |  Link to Article
Stamataki KE, Spina J, Rangou DB, Chlouverakis CS, Piaditis GP. Ovarian function in women with non-insulin dependent diabetes mellitus.  Clin Endocrinol (Oxf). 1996;45:615-621
PubMed   |  Link to Article
Goodman-Gruen D, Barrett-Connor E. Sex hormone-binding globulin and glucose tolerance in postmenopausal women: the Rancho Bernardo Study.  Diabetes Care. 1997;20:645-649
PubMed   |  Link to Article
Rodin DA, Bano G, Bland JM, Taylor K, Nussey SS. Polycystic ovaries and associated metabolic abnormalities in Indian subcontinent Asian women.  Clin Endocrinol (Oxf). 1998;49:91-99
PubMed   |  Link to Article
Stoney RM, Walker KZ, Best JD, Ireland PD, Giles GG, O’Dea K. Do postmenopausal women with NIDDM have a reduced capacity to deposit and conserve lower-body fat?  Diabetes Care. 1998;21:828-830
PubMed   |  Link to Article
Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome.  Diabetes Care. 1999;22:141-146
PubMed   |  Link to Article
Walker KZ, Piers LS, Putt RS, Jones JA, O’Dea K. Effects of regular walking on cardiovascular risk factors and body composition in normoglycemic women and women with type 2 diabetes.  Diabetes Care. 1999;22:555-561
PubMed   |  Link to Article
Chearskul S, Charoenlarp K, Thongtang V, Nitiyanant W. Study of plasma hormones and lipids in healthy elderly Thais compared to patients with chronic diseases: diabetes mellitus, essential hypertension and coronary heart disease.  J Med Assoc Thai. 2000;83:266-277
PubMed
Phillips GB, Tuck CH, Jing TY.  et al.  Association of hyperandrogenemia and hyperestrogenemia with type 2 diabetes in Hispanic postmenopausal women.  Diabetes Care. 2000;23:74-79
PubMed   |  Link to Article
Zietz B, Cuk A, Hugl S.  et al.  Association of increased C-peptide serum levels and testosterone in type 2 diabetes.  Eur J Intern Med. 2000;11:322-328
PubMed   |  Link to Article
Bener A, Lestringant GG, Townsend A, Al-Mulla HM. Association of acanthosis nigricans with risk of diabetes mellitus, and hormonal disturbances in Arabian females: case-control study.  Maturitas. 2001;40:53-59
PubMed   |  Link to Article
van der Merwe MT, Schlaphoff GP, Crowther NJ.  et al.  Lactate and glycerol release from adipose tissue in lean, obese, and diabetic women from South Africa.  J Clin Endocrinol Metab. 2001;86:3296-3303
PubMed   |  Link to Article
Corrales JJ, Burgo RM, Garca-Berrocal B.  et al.  Partial androgen deficiency in aging type 2 diabetic men and its relationship to glycemic control.  Metabolism. 2004;53:666-672
PubMed   |  Link to Article
Jayagopal V, Kilpatrick ES, Jennings PE, Holding S, Hepburn DA, Atkin SL. The biological variation of sex hormone-binding globulin in type 2 diabetes: implications for sex hormone-binding globulin as a surrogate marker of insulin resistance.  Diabetes Care. 2004;27:278-280
PubMed   |  Link to Article
Svartberg J, Jenssen T, Sundsfjord J, Jorde R. The associations of endogenous testosterone and sex hormone-binding globulin with glycosylated hemoglobin levels, in community dwelling men: the Tromso Study.  Diabetes Metab. 2004;30:29-34
PubMed   |  Link to Article
Kalme T, Seppala M, Qiao Q.  et al.  Sex hormone-binding globulin and insulin-like growth factor-binding protein-1 as indicators of metabolic syndrome, cardiovascular risk, and mortality in elderly men.  J Clin Endocrinol Metab. 2005;90:1550-1556
PubMed   |  Link to Article
Rosner W. An extraordinarily inaccurate assay for free testosterone is still with us.  J Clin Endocrinol Metab. 2001;86:2903
PubMed   |  Link to Article
Rosner W. Errors in the measurement of plasma free testosterone.  J Clin Endocrinol Metab. 1997;82:2014-2015
PubMed
Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum.  J Clin Endocrinol Metab. 1999;84:3666-3672
PubMed   |  Link to Article
Wilke TJ, Utley DJ. Total testosterone, free-androgen index, calculated free testosterone, and free testosterone by analog RIA compared in hirsute women and in otherwise-normal women with altered binding of sex-hormone-binding globulin.  Clin Chem. 1987;33:1372-1375
PubMed
Matsumoto AM, Bremner WJ. Serum testosterone assays—accuracy matters.  J Clin Endocrinol Metab. 2004;89:520-524
PubMed   |  Link to Article
Miller KK, Rosner W, Lee H.  et al.  Measurement of free testosterone in normal women and women with androgen deficiency: comparison of methods.  J Clin Endocrinol Metab. 2004;89:525-533
PubMed   |  Link to Article
Wang C, Catlin DH, Demers LM, Starcevic B, Swerdloff RS. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry.  J Clin Endocrinol Metab. 2004;89:534-543
PubMed   |  Link to Article
DerSimonian R, Laird N. Meta-analysis in clinical trials.  Control Clin Trials. 1986;7:177-188
PubMed   |  Link to Article
van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression.  Stat Med. 2002;21:589-624
PubMed   |  Link to Article
Egger M, Altman DG, Smith GDSystematic Reviews in Health Care: Meta-analysis in Context2nd ed. London, England: BMJ Books; 2001
Golden SH, Ding J, Szklo M, Schmidt MI, Duncan BB, Dobs A. Glucose and insulin components of the metabolic syndrome are associated with hyperandrogenism in postmenopausal women: the Atherosclerosis Risk In Communities study.  Am J Epidemiol. 2004;160:540-548
PubMed   |  Link to Article
Korhonen S, Hippelainen M, Niskanen L, Vanhala M, Saarikoski S. Relationship of the metabolic syndrome and obesity to polycystic ovary syndrome: a controlled, population-based study.  Am J Obstet Gynecol. 2001;184:289-296
PubMed   |  Link to Article
Gyllenborg J, Rasmussen SL, Borch-Johnsen K, Heitmann BL, Skakkebaek NE, Juul A. Cardiovascular risk factors in men: the role of gonadal steroids and sex hormone-binding globulin.  Metabolism. 2001;50:882-888
PubMed   |  Link to Article
Khaw KT, Barrett-Connor E. Lower endogenous androgens predict central adiposity in men.  Ann Epidemiol. 1992;2:675-682
PubMed   |  Link to Article
Tsai EC, Boyko EJ, Leonetti DL, Fujimoto WY. Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men.  Int J Obes Relat Metab Disord. 2000;24:485-491
PubMed   |  Link to Article
Smith JC, Bennett S, Evans LM.  et al.  The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer.  J Clin Endocrinol Metab. 2001;86:4261-4267
PubMed   |  Link to Article
Smith MR, Lee H, Nathan DM. Insulin sensitivity during combined androgen blockade for prostate cancer [published online ahead of print January 24, 2006].  J Clin Endocrinol Metabdoi:10.1210/jc2005-2507
Snyder PJ, Peachey H, Hannoush P.  et al.  Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age.  J Clin Endocrinol Metab. 1999;84:2647-2653
PubMed   |  Link to Article
Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism.  J Clin Endocrinol Metab. 1996;81:4358-4365
PubMed   |  Link to Article
Wang C, Swerdloff RS, Iranmanesh A.  et al.  Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men.  J Clin Endocrinol Metab. 2000;85:2839-2853
PubMed   |  Link to Article
Rebuffe-Scrive M, Marin P, Bjorntorp P. Effect of testosterone on abdominal adipose tissue in men.  Int J Obes. 1991;15:791-795
PubMed
Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency.  Aging Male. 2003;6:1-7
PubMed
Liu PY, Yee B, Wishart SM.  et al.  The short-term effects of high-dose testosterone on sleep, breathing, and function in older men.  J Clin Endocrinol Metab. 2003;88:3605-3613
PubMed   |  Link to Article
Marin P. Testosterone and regional fat distribution.  Obes Res. 1995;3:(suppl 4)  609S-612S
PubMed   |  Link to Article
Pagotto U, Gambineri A, Pelusi C.  et al.  Testosterone replacement therapy restores normal ghrelin in hypogonadal men.  J Clin Endocrinol Metab. 2003;88:4139-4143
PubMed   |  Link to Article
Lovejoy JC, Bray GA, Bourgeois MO.  et al.  Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women—a clinical research center study.  J Clin Endocrinol Metab. 1996;81:2198-2203
PubMed   |  Link to Article
Gambineri A, Pagotto U, Tschop M.  et al.  Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome.  J Endocrinol Invest. 2003;26:629-634
PubMed
Khaw KT, Barrett-Connor E. Fasting plasma glucose levels and endogenous androgens in non-diabetic postmenopausal women.  Clin Sci (Lond). 1991;80:199-203
PubMed
Phillips GB. Relationship between serum sex hormones and the glucose-insulin-lipid defect in men with obesity.  Metabolism. 1993;42:116-120
PubMed   |  Link to Article
Ibanez L, Valls C, Ferrer A, Ong K, Dunger DB, De Zegher F. Additive effects of insulin-sensitizing and anti-androgen treatment in young, nonobese women with hyperinsulinism, hyperandrogenism, dyslipidemia, and anovulation.  J Clin Endocrinol Metab. 2002;87:2870-2874
PubMed   |  Link to Article
Rincon J, Holmang A, Wahlstrom EO.  et al.  Mechanisms behind insulin resistance in rat skeletal muscle after oophorectomy and additional testosterone treatment.  Diabetes. 1996;45:615-621
PubMed   |  Link to Article
Lin HY, Xu Q, Yeh S, Wang RS, Sparks JD, Chang C. Insulin and leptin resistance with hyperleptinemia in mice lacking androgen receptor.  Diabetes. 2005;54:1717-1725
PubMed   |  Link to Article
Bjorntorp P. The regulation of adipose tissue distribution in humans.  Int J Obes Relat Metab Disord. 1996;20:291-302
PubMed
Marin P, Oden B, Bjorntorp P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens.  J Clin Endocrinol Metab. 1995;80:239-243
PubMed   |  Link to Article
Bhasin S, Storer TW, Berman N.  et al.  Testosterone replacement increases fat-free mass and muscle size in hypogonadal men.  J Clin Endocrinol Metab. 1997;82:407-413
PubMed   |  Link to Article
Bhasin S, Storer TW, Javanbakht M.  et al.  Testosterone replacement and resistance exercise in HIV-infected men with weight loss and low testosterone levels.  JAMA. 2000;283:763-770
PubMed   |  Link to Article
Tenover JS. Effects of testosterone supplementation in the aging male.  J Clin Endocrinol Metab. 1992;75:1092-1098
PubMed   |  Link to Article
Snyder PJ, Peachey H, Berlin JA.  et al.  Effects of testosterone replacement in hypogonadal men.  J Clin Endocrinol Metab. 2000;85:2670-2677
PubMed   |  Link to Article
Bhasin S, Storer TW, Berman N.  et al.  The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men.  N Engl J Med. 1996;335:1-7
PubMed   |  Link to Article
Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men.  J Clin Endocrinol Metab. 2004;89:3313-3318
PubMed   |  Link to Article
Malkin CJ, Pugh PJ, Morris PD.  et al.  Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life.  Heart. 2004;90:871-876
PubMed   |  Link to Article
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.  J Clin Invest. 1995;95:2409-2415
PubMed   |  Link to Article
Valverde AM, Teruel T, Navarro P, Benito M, Lorenzo M. Tumor necrosis factor-alpha causes insulin receptor substrate-2-mediated insulin resistance and inhibits insulin-induced adipogenesis in fetal brown adipocytes.  Endocrinology. 1998;139:1229-1238
PubMed   |  Link to Article
Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF alpha by human muscle: relationship to insulin resistance.  J Clin Invest. 1996;97:1111-1116
PubMed   |  Link to Article
Spranger J, Kroke A, Mohlig M.  et al.  Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.  Diabetes. 2003;52:812-817
PubMed   |  Link to Article
Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women.  Diabetes. 2004;53:693-700
PubMed   |  Link to Article
Bouman A, Schipper M, Heineman MJ, Faas MM. Gender difference in the non-specific and specific immune response in humans.  Am J Reprod Immunol. 2004;52:19-26
PubMed   |  Link to Article
Pietschmann P, Gollob E, Brosch S.  et al.  The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism.  Exp Gerontol. 2003;38:1119-1127
PubMed   |  Link to Article
Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma.  J Clin Endocrinol Metab. 1981;53:58-68
PubMed   |  Link to Article
Strandberg TE, Ylikorkala O, Tikkanen MJ. Differing effects of oral and transdermal hormone replacement therapy on cardiovascular risk factors in healthy postmenopausal women.  Am J Cardiol. 2003;92:212-214
PubMed   |  Link to Article
Vehkavaara S, Silveira A, Hakala-Ala-Pietila T.  et al.  Effects of oral and transdermal estrogen replacement therapy on markers of coagulation, fibrinolysis, inflammation and serum lipids and lipoproteins in postmenopausal women.  Thromb Haemost. 2001;85:619-625
PubMed
O’Sullivan AJ, Crampton LJ, Freund J, Ho KK. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women.  J Clin Invest. 1998;102:1035-1040
PubMed   |  Link to Article
Hammes A, Andreassen TK, Spoelgen R.  et al.  Role of endocytosis in cellular uptake of sex steroids.  Cell. 2005;122:751-762
PubMed   |  Link to Article
Rosner W, Hryb DJ, Khan MS, Nakhla AM, Romas NA. Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane.  J Steroid Biochem Mol Biol. 1999;69:481-485
PubMed   |  Link to Article
Sodergard R, Backstrom T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature.  J Steroid Biochem. 1982;16:801-810
PubMed   |  Link to Article
Endogenous Hormones and Breast Cancer Collaborative Group.  Free estradiol and breast cancer risk in postmenopausal women: comparison of measured and calculated values.  Cancer Epidemiol Biomarkers Prev. 2003;12:1457-1461
PubMed
Rinaldi S, Geay A, Dechaud H.  et al.  Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations.  Cancer Epidemiol Biomarkers Prev. 2002;11:1065-1071
PubMed
Ehrmann DA. Polycystic ovary syndrome.  N Engl J Med. 2005;352:1223-1236
PubMed   |  Link to Article
Haffner SM. Sex hormone-binding protein, hyperinsulinemia, insulin resistance and noninsulin-dependent diabetes.  Horm Res. 1996;45:233-237
PubMed   |  Link to Article

Figures

Figure 1. Summary of Article Selection Process
Graphic Jump Location

*Sum of specific excluded studies greater than total due to overlapping classifications of excluded studies.

Figure 2. Random-Effects Pooled Mean Difference of Testosterone Levels Between Type 2 Diabetes Cases and Controls, Men and Women
Graphic Jump Location

Negative values represent lower levels among type 2 diabetes cases. Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. To convert nmol/L to ng/dL, divide by 0.0347. CI indicates confidence interval.
*European population.
†Melanesian population.
‡Independent population of type 2 diabetes cases and controls among women with acanthosis nigricans.

Figure 3. Random-Effects Pooled Relative Risks of Testosterone and Type 2 Diabetes from Prospective Studies in Men
Graphic Jump Location

Relative risks reported for upper dichotomy (449.6-605.2 ng/dL [15.6-21.0 nmol/L]) vs lower dichotomy (213.2-449.5 ng/dL [7.4-15.5 nmol/L]). Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. Only 1 prospective study among women (P = .06 for sex dimorphism). CI indicates confidence interval.

Figure 4. Random-Effects Pooled Mean Difference of Sex Hormone–Binding Globulin Levels Between Type 2 Diabetes Cases and Controls, Men and Women
Graphic Jump Location

Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. Significant sex dimorphism (P<.001 for effect modification by sex). CI indicates confidence interval.
*Melanesian population.

Figure 5. Random-Effects Pooled Relative Risks of Sex Hormone–Binding Globulin (SHBG) and Type 2 Diabetes from Prospective Studies
Graphic Jump Location

Relative risks reported for upper dichotomy (>60 nmol/L for women and >28.3 nmol/L for men) vs lower dichotomy. Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. Significant sex difference (P = .003 for interaction). CI indicates confidence interval.

Figure 6. Random-Effects Pooled Mean Difference of Estradiol Levels Between Type 2 Diabetes Cases and Controls, Men and Postmenopausal Women
Graphic Jump Location

Sizes of data markers represent the statistical weight that each study contributed to the overall random-effects estimate. P = .87 for sex difference. To convert pmol/L to pg/mL, divide by 3.671. CI indicates confidence interval.

Tables

Table Graphic Jump LocationTable 1. Characteristics of Prospective Studies of Testosterone, Sex Hormone–Binding Globulin, and Estradiol
Table Graphic Jump LocationTable 2. Characteristics of Cross-Sectional Studies of Testosterone, Sex Hormone–Binding Globulin, and Estradiol
Table Graphic Jump LocationTable 3. Mean Differences of Testosterone and Sex Hormone–Binding Globulin Between Type 2 Diabetes Cases and Controls*
Table Graphic Jump LocationTable 4. Mean Differences of Estradiol Between Type 2 Diabetes Cases and Controls in Cross-Sectional Studies*

References

US Centers for Disease Control and Prevention.  National Diabetes Fact Sheet: United States 2005. Atlanta, Ga: US Dept of Health and Human Services, Centers for Disease Control and Prevention; 2005
Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies [published online ahead of print December 21, 2005].  BMJ. 2006;332:73-78
PubMed   |  Link to Article
Willett WC, Dietz WH, Colditz GA. Guidelines for healthy weight.  N Engl J Med. 1999;341:427-434
PubMed   |  Link to Article
Ford ES, Liu S. Acne in adolescence—protecting the heart but damaging the prostate later in life?  Am J Epidemiol. 2005;161:1102-1106
PubMed   |  Link to Article
Tok EC, Ertunc D, Evruke C, Dilek S. The androgenic profile of women with non-insulin-dependent diabetes mellitus.  J Reprod Med. 2004;49:746-752
PubMed
Haffner SM, Dunn JF, Katz MS. Relationship of sex hormone-binding globulin to lipid, lipoprotein, glucose, and insulin concentrations in postmenopausal women.  Metabolism. 1992;41:278-284
PubMed   |  Link to Article
Toprak S, Yonem A, Cakir B.  et al.  Insulin resistance in nonobese patients with polycystic ovary syndrome.  Horm Res. 2001;55:65-70
PubMed   |  Link to Article
Weerakiet S, Srisombut C, Bunnag P, Sangtong S, Chuangsoongnoen N, Rojanasakul A. Prevalence of type 2 diabetes mellitus and impaired glucose tolerance in Asian women with polycystic ovary syndrome.  Int J Gynaecol Obstet. 2001;75:177-184
PubMed   |  Link to Article
Ciampelli M, Fulghesu AM, Cucinelli F.  et al.  Impact of insulin and body mass index on metabolic and endocrine variables in polycystic ovary syndrome.  Metabolism. 1999;48:167-172
PubMed   |  Link to Article
Kalish GM, Barrett-Connor E, Laughlin GA, Gulanski BI. Association of endogenous sex hormones and insulin resistance among postmenopausal women: results from the Postmenopausal Estrogen/Progestin Intervention Trial.  J Clin Endocrinol Metab. 2003;88:1646-1652
PubMed   |  Link to Article
Park KH, Kim JY, Ahn CW, Song YD, Lim SK, Lee HC. Polycystic ovarian syndrome (PCOS) and insulin resistance.  Int J Gynaecol Obstet. 2001;74:261-267
PubMed   |  Link to Article
Gambineri A, Pelusi C, Manicardi E.  et al.  Glucose intolerance in a large cohort of mediterranean women with polycystic ovary syndrome: phenotype and associated factors.  Diabetes. 2004;53:2353-2358
PubMed   |  Link to Article
Andersson B, Marin P, Lissner L, Vermeulen A, Bjorntorp P. Testosterone concentrations in women and men with NIDDM.  Diabetes Care. 1994;17:405-411
PubMed   |  Link to Article
Oh JY, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study.  Diabetes Care. 2002;25:55-60
PubMed   |  Link to Article
Haffner SM, Karhapaa P, Mykkanen L, Laakso M. Insulin resistance, body fat distribution, and sex hormones in men.  Diabetes. 1994;43:212-219
PubMed   |  Link to Article
Pasquali R, Casimirri F, Cantobelli S.  et al.  Effect of obesity and body fat distribution on sex hormones and insulin in men.  Metabolism. 1991;40:101-104
PubMed   |  Link to Article
Phillips GB. Relationship between serum sex hormones and glucose, insulin and lipid abnormalities in men with myocardial infarction.  Proc Natl Acad Sci U S A. 1977;74:1729-1733
PubMed   |  Link to Article
Seidell JC, Bjorntorp P, Sjostrom L, Kvist H, Sannerstedt R. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels.  Metabolism. 1990;39:897-901
PubMed   |  Link to Article
Simon D, Preziosi P, Barrett-Connor E.  et al.  Interrelation between plasma testosterone and plasma insulin in healthy adult men: the Telecom Study.  Diabetologia. 1992;35:173-177
PubMed   |  Link to Article
Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat.  Diabetes Care. 2004;27:861-868
PubMed   |  Link to Article
Marin P, Holmang S, Jonsson L.  et al.  The effects of testosterone treatment on body composition and metabolism in middle-aged obese men.  Int J Obes Relat Metab Disord. 1992;16:991-997
PubMed
Simon D, Charles MA, Lahlou N.  et al.  Androgen therapy improves insulin sensitivity and decreases leptin level in healthy adult men with low plasma total testosterone: a 3-month randomized placebo-controlled trial.  Diabetes Care. 2001;24:2149-2151
PubMed   |  Link to Article
Pitteloud N, Mootha VK, Dwyer AA.  et al.  Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men.  Diabetes Care. 2005;28:1636-1642
PubMed   |  Link to Article
Pitteloud N, Hardin M, Dwyer AA.  et al.  Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men.  J Clin Endocrinol Metab. 2005;90:2636-2641
PubMed   |  Link to Article
Endre T, Mattiasson I, Berglund G, Hulthen UL. Low testosterone and insulin resistance in hypertension-prone men.  J Hum Hypertens. 1996;10:755-761
PubMed
Muller M, Grobbee DE, den Tonkelaar I, Lamberts SWJ, van der Schouw YT. Endogenous sex hormones and metabolic syndrome in aging men.  J Clin Endocrinol Metab. 2005;90:2618-2623
PubMed   |  Link to Article
Pasquali R, Macor C, Vicennati V.  et al.  Effects of acute hyperinsulinemia on testosterone serum concentrations in adult obese and normal-weight men.  Metabolism. 1997;46:526-529
PubMed   |  Link to Article
Chang TC, Tung CC, Hsiao YL. Hormonal changes in elderly men with non-insulin-dependent diabetes mellitus and the hormonal relationships to abdominal adiposity.  Gerontology. 1994;40:260-267
PubMed   |  Link to Article
Barrett-Connor E, Khaw KT. Endogenous sex hormones and cardiovascular disease in men: a prospective population-based study.  Circulation. 1988;78:539-545
PubMed   |  Link to Article
Vermeulen A, Kaufman JM, Giagulli VA. Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males.  J Clin Endocrinol Metab. 1996;81:1821-1826
PubMed   |  Link to Article
Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men.  J Clin Endocrinol Metab. 1994;79:997-1000
PubMed   |  Link to Article
Goodman-Gruen D, Barrett-Connor E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women.  Diabetes Care. 2000;23:912-918
PubMed   |  Link to Article
Haffner SM, Valdez RA, Mykkanen L, Stern MP, Katz MS. Decreased testosterone and dehydroepiandrosterone sulfate concentrations are associated with increased insulin and glucose concentrations in nondiabetic men.  Metabolism. 1994;43:599-603
PubMed   |  Link to Article
Sowers M, Derby C, Jannausch ML, Torrens JI, Pasternak R. Insulin resistance, hemostatic factors, and hormone interactions in pre- and perimenopausal women: SWAN.  J Clin Endocrinol Metab. 2003;88:4904-4910
PubMed   |  Link to Article
Haffner SM, Shaten J, Stern MP, Smith GD, Kuller L.MRFIT Research Group.  Low levels of sex hormone-binding globulin and testosterone predict the development of non-insulin-dependent diabetes mellitus in men.  Am J Epidemiol. 1996;143:889-897
PubMed   |  Link to Article
Christodoulakos G, Lambrinoudaki I, Panoulis C.  et al.  Serum androgen levels and insulin resistance in postmenopausal women: association with hormone therapy, tibolone and raloxifene.  Maturitas. 2005;50:321-330
PubMed   |  Link to Article
Birkeland KI, Hanssen KF, Torjesen PA, Vaaler S. Level of sex hormone-binding globulin is positively correlated with insulin sensitivity in men with type 2 diabetes.  J Clin Endocrinol Metab. 1993;76:275-278
PubMed   |  Link to Article
Lee CC, Kasa-Vubu JZ, Supiano MA. Androgenicity and obesity are independently associated with insulin sensitivity in postmenopausal women.  Metabolism. 2004;53:507-512
PubMed   |  Link to Article
Ando S, Rubens R, Rottiers R. Androgen plasma levels in male diabetics.  J Endocrinol Invest. 1984;7:21-24
PubMed
Ozata M, Oktenli C, Bingol N, Ozdemir IC. The effects of metformin and diet on plasma testosterone and leptin levels in obese men.  Obes Res. 2001;9:662-667
PubMed   |  Link to Article
Jang Y, Lee JH, Cho EY, Chung NS, Topham D, Balderston B. Differences in body fat distribution and antioxidant status in Korean men with cardiovascular disease with or without diabetes.  Am J Clin Nutr. 2001;73:68-74
PubMed
Abate N, Haffner SM, Garg A, Peshock RM, Grundy SM. Sex steroid hormones, upper body obesity, and insulin resistance.  J Clin Endocrinol Metab. 2002;87:4522-4527
PubMed   |  Link to Article
Lindstedt G, Lundberg PA, Lapidus L, Lundgren H, Bengtsson C, Bjorntorp P. Low sex-hormone-binding globulin concentration as independent risk factor for development of NIDDM: 12-yr follow-up of population study of women in Gothenburg, Sweden.  Diabetes. 1991;40:123-128
PubMed   |  Link to Article
Haffner SM, Valdez RA, Morales PA, Hazuda HP, Stern MP. Decreased sex hormone-binding globulin predicts noninsulin-dependent diabetes mellitus in women but not in men.  J Clin Endocrinol Metab. 1993;77:56-60
PubMed   |  Link to Article
Tibblin G, Adlerberth A, Lindstedt G, Bjorntorp P. The pituitary-gonadal axis and health in elderly men: a study of men born in 1913.  Diabetes. 1996;45:1605-1609
PubMed   |  Link to Article
Okubo M, Tokui M, Egusa G, Yamakido M. Association of sex hormone-binding globulin and insulin resistance among Japanese-American subjects.  Diabetes Res Clin Pract. 2000;47:71-75
PubMed   |  Link to Article
Stellato RK, Feldman HA, Hamdy O, Horton ES, McKinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts Male Aging Study.  Diabetes Care. 2000;23:490-494
PubMed   |  Link to Article
Rosmond R, Wallerius S, Wanger P, Martin L, Holm G, Bjorntorp P. A 5-year follow-up study of disease incidence in men with an abnormal hormone pattern.  J Intern Med. 2003;254:386-390
PubMed   |  Link to Article
Laaksonen DE, Niskanen L, Punnonen K.  et al.  Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men.  Diabetes Care. 2004;27:1036-1041
PubMed   |  Link to Article
Daubresse JC, Meunier JC, Wilmotte J, Luyckx AS, Lefebvre PJ. Pituitary-testicular axis in diabetic men with and without sexual impotence.  Diabete Metab. 1978;4:233-237
PubMed
Shahwan MM, Spathis GS, Fry DE, Wood PJ, Marks V. Differences in pituitary and testicular function between diabetic patients on insulin and oral anti-diabetic agents.  Diabetologia. 1978;15:13-17
PubMed   |  Link to Article
Phillips GB. Evidence for hyperestrogenemia as the link between diabetes mellitus and myocardial infarction.  Am J Med. 1984;76:1041-1048
PubMed   |  Link to Article
Small M, MacRury S, Beastall GH, MacCuish AC. Oestradiol levels in diabetic men with and without a previous myocardial infarction.  Q J Med. 1987;64:617-623
PubMed
Defay R, Papoz L, Barny S, Bonnot-Lours S, Caces E, Simon D.CALedonia DIAbetes Mellitus (CALDIA) Study Group.  Hormonal status and NIDDM in the European and Melanesian populations of New Caledonia: a case-control study.  Int J Obes Relat Metab Disord. 1998;22:927-934
PubMed   |  Link to Article
Semple CG, Gray CE, Beastall GH. Androgen levels in men with diabetes mellitus.  Diabet Med. 1988;5:122-125
PubMed   |  Link to Article
Stamataki KE, Spina J, Rangou DB, Chlouverakis CS, Piaditis GP. Ovarian function in women with non-insulin dependent diabetes mellitus.  Clin Endocrinol (Oxf). 1996;45:615-621
PubMed   |  Link to Article
Goodman-Gruen D, Barrett-Connor E. Sex hormone-binding globulin and glucose tolerance in postmenopausal women: the Rancho Bernardo Study.  Diabetes Care. 1997;20:645-649
PubMed   |  Link to Article
Rodin DA, Bano G, Bland JM, Taylor K, Nussey SS. Polycystic ovaries and associated metabolic abnormalities in Indian subcontinent Asian women.  Clin Endocrinol (Oxf). 1998;49:91-99
PubMed   |  Link to Article
Stoney RM, Walker KZ, Best JD, Ireland PD, Giles GG, O’Dea K. Do postmenopausal women with NIDDM have a reduced capacity to deposit and conserve lower-body fat?  Diabetes Care. 1998;21:828-830
PubMed   |  Link to Article
Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome.  Diabetes Care. 1999;22:141-146
PubMed   |  Link to Article
Walker KZ, Piers LS, Putt RS, Jones JA, O’Dea K. Effects of regular walking on cardiovascular risk factors and body composition in normoglycemic women and women with type 2 diabetes.  Diabetes Care. 1999;22:555-561
PubMed   |  Link to Article
Chearskul S, Charoenlarp K, Thongtang V, Nitiyanant W. Study of plasma hormones and lipids in healthy elderly Thais compared to patients with chronic diseases: diabetes mellitus, essential hypertension and coronary heart disease.  J Med Assoc Thai. 2000;83:266-277
PubMed
Phillips GB, Tuck CH, Jing TY.  et al.  Association of hyperandrogenemia and hyperestrogenemia with type 2 diabetes in Hispanic postmenopausal women.  Diabetes Care. 2000;23:74-79
PubMed   |  Link to Article
Zietz B, Cuk A, Hugl S.  et al.  Association of increased C-peptide serum levels and testosterone in type 2 diabetes.  Eur J Intern Med. 2000;11:322-328
PubMed   |  Link to Article
Bener A, Lestringant GG, Townsend A, Al-Mulla HM. Association of acanthosis nigricans with risk of diabetes mellitus, and hormonal disturbances in Arabian females: case-control study.  Maturitas. 2001;40:53-59
PubMed   |  Link to Article
van der Merwe MT, Schlaphoff GP, Crowther NJ.  et al.  Lactate and glycerol release from adipose tissue in lean, obese, and diabetic women from South Africa.  J Clin Endocrinol Metab. 2001;86:3296-3303
PubMed   |  Link to Article
Corrales JJ, Burgo RM, Garca-Berrocal B.  et al.  Partial androgen deficiency in aging type 2 diabetic men and its relationship to glycemic control.  Metabolism. 2004;53:666-672
PubMed   |  Link to Article
Jayagopal V, Kilpatrick ES, Jennings PE, Holding S, Hepburn DA, Atkin SL. The biological variation of sex hormone-binding globulin in type 2 diabetes: implications for sex hormone-binding globulin as a surrogate marker of insulin resistance.  Diabetes Care. 2004;27:278-280
PubMed   |  Link to Article
Svartberg J, Jenssen T, Sundsfjord J, Jorde R. The associations of endogenous testosterone and sex hormone-binding globulin with glycosylated hemoglobin levels, in community dwelling men: the Tromso Study.  Diabetes Metab. 2004;30:29-34
PubMed   |  Link to Article
Kalme T, Seppala M, Qiao Q.  et al.  Sex hormone-binding globulin and insulin-like growth factor-binding protein-1 as indicators of metabolic syndrome, cardiovascular risk, and mortality in elderly men.  J Clin Endocrinol Metab. 2005;90:1550-1556
PubMed   |  Link to Article
Rosner W. An extraordinarily inaccurate assay for free testosterone is still with us.  J Clin Endocrinol Metab. 2001;86:2903
PubMed   |  Link to Article
Rosner W. Errors in the measurement of plasma free testosterone.  J Clin Endocrinol Metab. 1997;82:2014-2015
PubMed
Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum.  J Clin Endocrinol Metab. 1999;84:3666-3672
PubMed   |  Link to Article
Wilke TJ, Utley DJ. Total testosterone, free-androgen index, calculated free testosterone, and free testosterone by analog RIA compared in hirsute women and in otherwise-normal women with altered binding of sex-hormone-binding globulin.  Clin Chem. 1987;33:1372-1375
PubMed
Matsumoto AM, Bremner WJ. Serum testosterone assays—accuracy matters.  J Clin Endocrinol Metab. 2004;89:520-524
PubMed   |  Link to Article
Miller KK, Rosner W, Lee H.  et al.  Measurement of free testosterone in normal women and women with androgen deficiency: comparison of methods.  J Clin Endocrinol Metab. 2004;89:525-533
PubMed   |  Link to Article
Wang C, Catlin DH, Demers LM, Starcevic B, Swerdloff RS. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry.  J Clin Endocrinol Metab. 2004;89:534-543
PubMed   |  Link to Article
DerSimonian R, Laird N. Meta-analysis in clinical trials.  Control Clin Trials. 1986;7:177-188
PubMed   |  Link to Article
van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression.  Stat Med. 2002;21:589-624
PubMed   |  Link to Article
Egger M, Altman DG, Smith GDSystematic Reviews in Health Care: Meta-analysis in Context2nd ed. London, England: BMJ Books; 2001
Golden SH, Ding J, Szklo M, Schmidt MI, Duncan BB, Dobs A. Glucose and insulin components of the metabolic syndrome are associated with hyperandrogenism in postmenopausal women: the Atherosclerosis Risk In Communities study.  Am J Epidemiol. 2004;160:540-548
PubMed   |  Link to Article
Korhonen S, Hippelainen M, Niskanen L, Vanhala M, Saarikoski S. Relationship of the metabolic syndrome and obesity to polycystic ovary syndrome: a controlled, population-based study.  Am J Obstet Gynecol. 2001;184:289-296
PubMed   |  Link to Article
Gyllenborg J, Rasmussen SL, Borch-Johnsen K, Heitmann BL, Skakkebaek NE, Juul A. Cardiovascular risk factors in men: the role of gonadal steroids and sex hormone-binding globulin.  Metabolism. 2001;50:882-888
PubMed   |  Link to Article
Khaw KT, Barrett-Connor E. Lower endogenous androgens predict central adiposity in men.  Ann Epidemiol. 1992;2:675-682
PubMed   |  Link to Article
Tsai EC, Boyko EJ, Leonetti DL, Fujimoto WY. Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men.  Int J Obes Relat Metab Disord. 2000;24:485-491
PubMed   |  Link to Article
Smith JC, Bennett S, Evans LM.  et al.  The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer.  J Clin Endocrinol Metab. 2001;86:4261-4267
PubMed   |  Link to Article
Smith MR, Lee H, Nathan DM. Insulin sensitivity during combined androgen blockade for prostate cancer [published online ahead of print January 24, 2006].  J Clin Endocrinol Metabdoi:10.1210/jc2005-2507
Snyder PJ, Peachey H, Hannoush P.  et al.  Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age.  J Clin Endocrinol Metab. 1999;84:2647-2653
PubMed   |  Link to Article
Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism.  J Clin Endocrinol Metab. 1996;81:4358-4365
PubMed   |  Link to Article
Wang C, Swerdloff RS, Iranmanesh A.  et al.  Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men.  J Clin Endocrinol Metab. 2000;85:2839-2853
PubMed   |  Link to Article
Rebuffe-Scrive M, Marin P, Bjorntorp P. Effect of testosterone on abdominal adipose tissue in men.  Int J Obes. 1991;15:791-795
PubMed
Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency.  Aging Male. 2003;6:1-7
PubMed
Liu PY, Yee B, Wishart SM.  et al.  The short-term effects of high-dose testosterone on sleep, breathing, and function in older men.  J Clin Endocrinol Metab. 2003;88:3605-3613
PubMed   |  Link to Article
Marin P. Testosterone and regional fat distribution.  Obes Res. 1995;3:(suppl 4)  609S-612S
PubMed   |  Link to Article
Pagotto U, Gambineri A, Pelusi C.  et al.  Testosterone replacement therapy restores normal ghrelin in hypogonadal men.  J Clin Endocrinol Metab. 2003;88:4139-4143
PubMed   |  Link to Article
Lovejoy JC, Bray GA, Bourgeois MO.  et al.  Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women—a clinical research center study.  J Clin Endocrinol Metab. 1996;81:2198-2203
PubMed   |  Link to Article
Gambineri A, Pagotto U, Tschop M.  et al.  Anti-androgen treatment increases circulating ghrelin levels in obese women with polycystic ovary syndrome.  J Endocrinol Invest. 2003;26:629-634
PubMed
Khaw KT, Barrett-Connor E. Fasting plasma glucose levels and endogenous androgens in non-diabetic postmenopausal women.  Clin Sci (Lond). 1991;80:199-203
PubMed
Phillips GB. Relationship between serum sex hormones and the glucose-insulin-lipid defect in men with obesity.  Metabolism. 1993;42:116-120
PubMed   |  Link to Article
Ibanez L, Valls C, Ferrer A, Ong K, Dunger DB, De Zegher F. Additive effects of insulin-sensitizing and anti-androgen treatment in young, nonobese women with hyperinsulinism, hyperandrogenism, dyslipidemia, and anovulation.  J Clin Endocrinol Metab. 2002;87:2870-2874
PubMed   |  Link to Article
Rincon J, Holmang A, Wahlstrom EO.  et al.  Mechanisms behind insulin resistance in rat skeletal muscle after oophorectomy and additional testosterone treatment.  Diabetes. 1996;45:615-621
PubMed   |  Link to Article
Lin HY, Xu Q, Yeh S, Wang RS, Sparks JD, Chang C. Insulin and leptin resistance with hyperleptinemia in mice lacking androgen receptor.  Diabetes. 2005;54:1717-1725
PubMed   |  Link to Article
Bjorntorp P. The regulation of adipose tissue distribution in humans.  Int J Obes Relat Metab Disord. 1996;20:291-302
PubMed
Marin P, Oden B, Bjorntorp P. Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens.  J Clin Endocrinol Metab. 1995;80:239-243
PubMed   |  Link to Article
Bhasin S, Storer TW, Berman N.  et al.  Testosterone replacement increases fat-free mass and muscle size in hypogonadal men.  J Clin Endocrinol Metab. 1997;82:407-413
PubMed   |  Link to Article
Bhasin S, Storer TW, Javanbakht M.  et al.  Testosterone replacement and resistance exercise in HIV-infected men with weight loss and low testosterone levels.  JAMA. 2000;283:763-770
PubMed   |  Link to Article
Tenover JS. Effects of testosterone supplementation in the aging male.  J Clin Endocrinol Metab. 1992;75:1092-1098
PubMed   |  Link to Article
Snyder PJ, Peachey H, Berlin JA.  et al.  Effects of testosterone replacement in hypogonadal men.  J Clin Endocrinol Metab. 2000;85:2670-2677
PubMed   |  Link to Article
Bhasin S, Storer TW, Berman N.  et al.  The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men.  N Engl J Med. 1996;335:1-7
PubMed   |  Link to Article
Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men.  J Clin Endocrinol Metab. 2004;89:3313-3318
PubMed   |  Link to Article
Malkin CJ, Pugh PJ, Morris PD.  et al.  Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life.  Heart. 2004;90:871-876
PubMed   |  Link to Article
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.  J Clin Invest. 1995;95:2409-2415
PubMed   |  Link to Article
Valverde AM, Teruel T, Navarro P, Benito M, Lorenzo M. Tumor necrosis factor-alpha causes insulin receptor substrate-2-mediated insulin resistance and inhibits insulin-induced adipogenesis in fetal brown adipocytes.  Endocrinology. 1998;139:1229-1238
PubMed   |  Link to Article
Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF alpha by human muscle: relationship to insulin resistance.  J Clin Invest. 1996;97:1111-1116
PubMed   |  Link to Article
Spranger J, Kroke A, Mohlig M.  et al.  Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.  Diabetes. 2003;52:812-817
PubMed   |  Link to Article
Hu FB, Meigs JB, Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women.  Diabetes. 2004;53:693-700
PubMed   |  Link to Article
Bouman A, Schipper M, Heineman MJ, Faas MM. Gender difference in the non-specific and specific immune response in humans.  Am J Reprod Immunol. 2004;52:19-26
PubMed   |  Link to Article
Pietschmann P, Gollob E, Brosch S.  et al.  The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism.  Exp Gerontol. 2003;38:1119-1127
PubMed   |  Link to Article
Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma.  J Clin Endocrinol Metab. 1981;53:58-68
PubMed   |  Link to Article
Strandberg TE, Ylikorkala O, Tikkanen MJ. Differing effects of oral and transdermal hormone replacement therapy on cardiovascular risk factors in healthy postmenopausal women.  Am J Cardiol. 2003;92:212-214
PubMed   |  Link to Article
Vehkavaara S, Silveira A, Hakala-Ala-Pietila T.  et al.  Effects of oral and transdermal estrogen replacement therapy on markers of coagulation, fibrinolysis, inflammation and serum lipids and lipoproteins in postmenopausal women.  Thromb Haemost. 2001;85:619-625
PubMed
O’Sullivan AJ, Crampton LJ, Freund J, Ho KK. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women.  J Clin Invest. 1998;102:1035-1040
PubMed   |  Link to Article
Hammes A, Andreassen TK, Spoelgen R.  et al.  Role of endocytosis in cellular uptake of sex steroids.  Cell. 2005;122:751-762
PubMed   |  Link to Article
Rosner W, Hryb DJ, Khan MS, Nakhla AM, Romas NA. Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane.  J Steroid Biochem Mol Biol. 1999;69:481-485
PubMed   |  Link to Article
Sodergard R, Backstrom T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature.  J Steroid Biochem. 1982;16:801-810
PubMed   |  Link to Article
Endogenous Hormones and Breast Cancer Collaborative Group.  Free estradiol and breast cancer risk in postmenopausal women: comparison of measured and calculated values.  Cancer Epidemiol Biomarkers Prev. 2003;12:1457-1461
PubMed
Rinaldi S, Geay A, Dechaud H.  et al.  Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations.  Cancer Epidemiol Biomarkers Prev. 2002;11:1065-1071
PubMed
Ehrmann DA. Polycystic ovary syndrome.  N Engl J Med. 2005;352:1223-1236
PubMed   |  Link to Article
Haffner SM. Sex hormone-binding protein, hyperinsulinemia, insulin resistance and noninsulin-dependent diabetes.  Horm Res. 1996;45:233-237
PubMed   |  Link to Article
CME


You need to register in order to view this quiz.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 432

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
CME Related by Topic
PubMed Articles