We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Editorial |

Clinical Application of Whole-Genome Sequencing Proceed With Care

William Gregory Feero, MD, PhD1,2
[+] Author Affiliations
1Maine Dartmouth Family Medicine Residency, Augusta, Maine
2Associate Editor, JAMA
JAMA. 2014;311(10):1017-1019. doi:10.1001/jama.2014.1718.
Text Size: A A A
Published online


Stunning advances have been made over the last 5 years in the ability to rapidly and inexpensively detect variation in the human genome. In the mid-2000s massively parallel detection of single-nucleotide polymorphisms (SNPs) on gene chips (genotyping) burst on to the scene, launching the era of genome-wide association studies and high-profile direct-to-consumer marketing of genetic testing of questionable clinical value.1 More recently, substantial credible evidence has been accumulating for the research and clinical value of whole-exome sequencing (WES) for conditions ranging from cancer to developmental delay to mendelian disorders.25 Whole-exome sequencing uses high-throughput sequencing technologies to determine the arrangement of DNA base pairs specifying the protein coding regions of an individual’s genome, also known as the exome. As remarkable as SNP genotyping and WES technologies are, they are both interim methods for detecting DNA variation. Assuming perfect technical accuracy, both are limited in the extent of variation that they can discover in a patient. In the case of SNP genotyping, this is because of the type of known variations the platforms can detect and in WES because the exome comprises about 1% of the entire genome.



Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

First Page Preview

View Large
First page PDF preview




Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

26 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles