0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Clinical Review |

Clinical Applications of Blood-Derived and Marrow-Derived Stem Cells for Nonmalignant Diseases FREE

Richard K. Burt, MD; Yvonne Loh, MD; William Pearce, MD; Nirat Beohar, MD; Walter G. Barr, MD; Robert Craig, MD; Yanting Wen, MD; Jonathan A. Rapp, MD; John Kessler, MD
[+] Author Affiliations

Author Affiliations: Divisions of Immunotherapy (Drs Burt, Craig, and Wen), Cardiology (Drs Beohar and Rapp), Rheumatology (Dr Barr), and Gastroenterology (Dr Craig), Department of Medicine; Division of Vascular Surgery, Department of Surgery (Dr Pearce); and Department of Neurology (Dr Kessler), Northwestern University Feinberg School of Medicine, Chicago, Illinois; and Department of Hematology, Singapore General Hospital, Singapore (Dr Loh).


JAMA. 2008;299(8):925-936. doi:10.1001/jama.299.8.925.
Text Size: A A A
Published online

Context Stem cell therapy is rapidly developing and has generated excitement and promise as well as confusion and at times contradictory results in the lay and scientific literature. Many types of stem cells show great promise, but clinical application has lagged due to ethical concerns or difficulties in harvesting or safely and efficiently expanding sufficient quantities. In contrast, clinical indications for blood-derived (from peripheral or umbilical cord blood) and bone marrow–derived stem cells, which can be easily and safely harvested, are rapidly increasing.

Objective To summarize new, nonmalignant, nonhematologic clinical indications for use of blood- and bone marrow–derived stem cells.

Evidence Acquisition Search of multiple electronic databases (MEDLINE, EMBASE, Science Citation Index), US Food and Drug Administration [FDA] Drug Site, and National Institutes of Health Web site to identify studies published from January 1997 to December 2007 on use of hematopoietic stem cells (HSCs) in autoimmune, cardiac, or vascular diseases. The search was augmented by hand searching of reference lists in clinical trials, review articles, proceedings booklets, FDA reports, and contact with study authors and device and pharmaceutical companies.

Evidence Synthesis Of 926 reports identified, 323 were examined for feasibility and toxicity, including those with small numbers of patients, interim or substudy reports, and reports on multiple diseases, treatment of relapse, toxicity, mechanism of action, or stem cell mobilization. Another 69 were evaluated for outcomes. For autoimmune diseases, 26 reports representing 854 patients reported treatment-related mortality of less than 1% (2/220 patients) for nonmyeloablative, less than 2% (3/197) for dose-reduced myeloablative, and 13% (13/100) for intense myeloablative regimens, ie, those including total body irradiation or high-dose busulfan. While all trials performed during the inflammatory stage of autoimmune disease suggested that transplantation of HSCs may have a potent disease-remitting effect, remission duration remains unclear, and no randomized trials have been published. For reports involving cardiovascular diseases, including 17 reports involving 1002 patients with acute myocardial infarction, 16 involving 493 patients with chronic coronary artery disease, and 3 meta-analyses, the evidence suggests that stem cell transplantation performed in patients with coronary artery disease may contribute to modest improvement in cardiac function.

Conclusions Stem cells harvested from blood or marrow, whether administered as purified HSCs or mesenchymal stem cells or as an unmanipulated or unpurified product can, under appropriate conditions in select patients, provide disease-ameliorating effects in some autoimmune diseases and cardiovascular disorders. Clinical trials are needed to determine the most appropriate cell type, dose, method, timing of delivery, and adverse effects of adult HSCs for these and other nonmalignant disorders.

Figures in this Article

Stem cells are undifferentiated cells that through replication have the capability of both self-renewal and differentiation into mature specialized cells. In broad terms, there are 2 types of stem cells, embryonic stem cells and adult stem cells. Human embryonic stem cells are isolated from a 50- to 150-cell, 4- to 5-day-old postfertilization blastocyst. Embryonic stem cells generate every specialized cell in the human body and, while capable of indefinite ex vivo proliferation, exist only transiently in vivo (during embryogenesis). Adult stem cells are located in tissues throughout the body and function as a reservoir to replace damaged or aging cells. Under physiologic conditions, adult stem cells are traditionally thought to be restricted in their differentiation to cell lineages of the organ system in which they are located.

Embryonic stem cells have great promise and versatility but, compared with adult stem cells, are currently difficult to control due to their tendency to form tumors containing all types of tissue, ie, teratomas. Embryonic stem cell biology has been associated with ethical controversy, and feeder cell–free and xenogeneic-free culture methods approved by the US Food and Drug Administration are still being perfected. In contrast, adult stem cells normally behave well without formation of tumors and follow traditional lineage-specific differentiation patterns, fulfilling their physiologic homologous function of replacing normal turnover, aging, or damaged tissues. For these reasons, this review will be confined to adult stem cells.

Due to the inability to efficiently and safely harvest or expand stem cells from most adult organs (eg, liver, gastrointestinal tract, heart, brain), the majority of human stem cell trials have focused on clinical applications for hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), or both, which can be easily obtained in clinically sufficient numbers from peripheral blood, bone marrow, or umbilical cord blood and placenta.

Bone marrow, peripheral blood stem cells (PBSCs), and umbilical cord blood are all sources of adult HSCs; however, most of the cells in the collected product are mature hematopoietic and immune cells, rather than HSCs. To purify for HSCs, assays for their detection needed to be developed. Hematopoietic stem cell assays may be divided into surface antigen detection by flow cytometry, clonogenic colony-forming assays, and in vivo transplant marrow repopulation assays.1 The gold standard for HSCs is the ability to repopulate all hematopoietic lineages following marrow-ablative total body irradiation. Serial transplantation of stem cells from the original transplant recipient into secondary and tertiary irradiated recipients reconstitutes hematopoiesis with resultant normal life spans. Serial in vivo transplantation demonstrates the 2 essential functional criteria of HSCs: proliferation to replenish the stem cell compartment (self-renewal) and lifelong production of blood (terminal differentiation).2,3

Human hematopoietic progenitor cells are identified by glycoproteins CD34+, CD133+, or both. Most human marrow or blood CD34+ or CD133+ cells are committed progenitors, and only a minority are lifelong repopulating stem cells. A CD34- or CD133-enriched HSC product will reconstitute lifelong hematopoiesis and may be easily purified from the marrow or peripheral blood using commercially available instruments.46

When cells from a bone marrow aspirate are cultured in plastic flasks, hematopoietic cells and HSCs do not adhere to the plastic and are removed with change of media. The remaining plastic-adherent cells were originally termed colony-forming unit fibroblasts because they formed fibroblast-like colonies ex vivo.7 Subsequently, these adherent cells have been termed MSCs, an abbreviation for both mesenchymal stromal cells and mesenchymal stem cells. The former refers to the ability of MSCs to contribute to the structural matrix of bone marrow and to support hematopoiesis; the latter describes the ability of MSCs to differentiate under various ex vivo culture conditions into different mesenchymal-derived cells.

MSCs have no unique phenotypic marker. The minimal criteria by the International Society of Cellular Therapy to define MSCs are (1) plastic-adherent in culture; (2) expression of CD105, CD73, and CD90; 3) lack of expression of hematopoietic markers such as CD45, CD34, CD14, CD11b, CD19, CD79a, and HLA-DR; and 4) able to differentiate into osteoblasts, adipocytes, and chondrocytes.8 The ratio of MSCs to marrow mononuclear cells is estimated to be only 10 MSCs per million marrow cells.9 Despite relatively low numbers, a 2-mL aspirate of bone marrow can be expanded 500-fold ex vivo to 12 billion to 35 billion MSCs within 3 weeks.9

A search of multiple electronic databases (MEDLINE, EMBASE, and Science Citation Index), the Food and Drug Administration Drug Site (http://www.fda.gov), and the National Institutes of Health Web site (http://www.clinicaltrials.gov) was conducted to identify studies published from January 1997 to December 2007 on use of hematopoietic, bone marrow, peripheral blood, mesenchymal, or umbilical cord blood stem cells in autoimmune, cardiac, or vascular disease. This search was augmented by hand searching of reference lists in clinical trials, review articles, proceedings booklets, Food and Drug Administration reports, and contact with study authors and device and pharmaceutical companies. Author names that recurred repeatedly (≥6 times) within a given subject area were also searched for all published reports.

The following data terms were included in the search: stem cell transplantation, bone marrow transplantation, peripheral blood stem cell transplantation, hematopoietic stem cell transplantation, mesenchymal stem cell transplantation, circulating progenitor cell, autoimmune diseases, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, Crohn's disease, rheumatoid arthritis, juvenile idiopathic arthritis, vasculitis, Wegner’s, Sjögren’s, Behcet’s, celiac disease, dermatomyositis, polymyositis, relapsing polychondritis, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, diabetes, coronary artery disease, myocardial infarction, myocardial ischemia, coronary circulation, and peripheral vascular disease. Animal data, abstracts, and non–English-language publications were excluded from the search.

Four reviewers (R.K.B., Y. W., Y.L., and J.A.R.) judged eligibility of studies independently and simultaneously. The initial search identified 926 articles (Figure). Of these, 603 were excluded because they were reviews, editorials, commentaries, ethical discussions, or cancer-related. Another 323 were examined for toxicity and feasibility. These included mechanistic, stem cell collection, or toxicity reports, treatment of relapse, multiple diseases in a single report, interim or substudy reports, and reports with a limited number of patients (≤3 patients with autoimmune disorders, <10 with peripheral vascular disease, <20 with chronic ischemic heart disease, or <30 with acute ischemic heart disease).

Place holder to copy figure label and caption
Figure. Flow of Eligible Studies of Stem Cell Transplantation for Nonmalignant Nonhematologic Diseases
Graphic Jump Location

aAssessed both acute infarction and chronic ischemia; this study is also included in the 3 meta-analyses shown above.

Outcome was reviewed in 69 reports (20 on acute ischemic heart disease that included ≥30 patients, 17 on disease [≥20 patients], 6 on peripheral vascular disease [≥10 patients], and 26 on autoimmune disorders [≥4 patients] that reported on a single autoimmune disease and were not subsequently reported as part of a later study or analysis). These 69 reports included 854 patients with autoimmune diseases, 1002 patients with acute myocardial infarction, 493 patients with chronic myocardial ischemia, and 169 with peripheral vascular disease.

Stem Cells for Autoimmune Diseases

Hematopoietic stem cell transplantation (HSCT) for treatment of patients with severe autoimmune diseases began in the late 1990s. These clinical trials were based on extensive preclinical animal transplantation experiments. Some animal autoimmune diseases are environmentally induced by vaccination with self-peptides, adjuvant, or both and may be cured by a syngeneic or pseudoautologous (the animal equivalent of autologous) HSCT. The rationale of autologous HSCT for autoimmune diseases is to immune reset, ie, to generate new self-tolerant lymphocytes after chemotherapy-induced elimination of self- or auto-reactive lymphocytes (ie, lymphoablation). Other animal autoimmune disorders occur spontaneously without intentional or obvious environmental stimuli. These spontaneous-onset animal autoimmune diseases require allogeneic HSCT for cure. Allogeneic HSCT is based on the rationale of both immune reset (similar to autologous HSCT) and of correcting the genetic predisposition to disease by reinfusing non–disease-prone HSCs from a normal donor.

Treatment-related mortality for autologous HSCT of autoimmune diseases in the European Group for Blood and Marrow Transplantation registry is approximately 7%,10 and some trials have reported rates of up to 23%.11 Treatment-related mortality, although generally improving with greater experience and more careful patient selection, has justifiably dampened enthusiasm for the field. Autologous HSCT for autoimmune diseases may be performed with either myeloablative or nonmyeloablative regimens.12 Myeloablative regimens use cancer-specific treatments that destroy the entire marrow compartment, including marrow stem cells, resulting in irreversible and lethal marrow failure if HSCs are not reinfused. Nonmyeloablative regimens are designed specifically for autoimmune diseases, ie, for lymphoablation without irreversible destruction of marrow stem cells. Following a nonmyeloablative regimen, hematopoietic recovery will occur without infusion of HSCs; however, autologous HSCs provide support and shorten the duration of chemotherapy-induced marrow suppression.13

The essential argument in favor of nonmyeloablative regimens is that treatment-related mortality needs to be very low for nonmalignant diseases, and nonmyeloablative regimens appear safer than myeloablative regimens11,1437 (Table 1). A percentage of patients may be cured by autologous HSCT, but—independent of using a myeloablative or nonmyeloablative regimen—disease relapse may occur, and the incidence of serologic remissions and the correlation, if any, to duration of clinical remission has not been evaluated. Therefore, until and unless proven otherwise, autologous HSCT for autoimmune diseases should not be viewed as a cure but rather as changing the natural history of disease. This second point should be considered as the more realistic expectation in justifying mortality end points in favor of nonmyeloablative regimens.

Table Graphic Jump LocationTable 1. Treatment-Related Mortality Following Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseasesa

A third point in favor of nonmyeloablative regimens is that immune-mediated diseases may, despite significant morbidity, remit or “burn out.” While probability of poor outcomes can be determined for a given population, individual patients who may eventually remit or stabilize spontaneously cannot always be excluded a priori. It is debatable whether a subset of patients who may remit without HSCT should be exposed to myeloablative regimens, especially those including total body irradiation, which cause a relatively high incidence of a more lethal disease, ie, myelodysplastic syndrome (MDS)/leukemia.12 Treatment of systemic sclerosis and multiple sclerosis with myeloablative regimens including total body irradiation has already been reported to be complicated by MDS/leukemia,11,14 an occurrence consistent with the approximately 10% incidence of MDS after autologous HSCT using total body irradiation regimens in low-grade lymphomas.38,39

Independent of whether myeloablative or nonmyeloablative regimens are used, another complication, late secondary autoimmune disorders, may arise from some agents used in the conditioning regimen. The initial standard nonmyeloablative regimen of cyclophosphamide and rabbit antithymocyte globulin (rATG) was well tolerated. A second-generation nonmyeloablative regimen used cylophosphamide and a broader- and longer-acting agent, alemtuzumab, instead of rATG. Potential life-threatening secondary autoimmune cytopenias, including idiopathic thrombocytopenic purpura, autoimmune neutropenia, and autoimmune hemolytic anemia, occurred late (2 to 18 months) after transplantation in patients receiving regimens containing alemtuzumab.40 A third-generation nonmyeloablative regimen, termed “ rituximab sandwich,” entails 1 dose of rituximab given before and after cyclophosphamide and rATG. To date, this regimen has been well tolerated.

Both early and late toxicity are a consequence of the regimen used for transplantation and of the increase in transplant-related mortality that occurs with increased intensity of the transplant regimen. Treatment-related mortality is less than 1% for nonmyeloablative, less than 2% for low-intensity myeloablative, and 13% for high-intensity myeloablative regimens (Table 1). A number of reports combined data from patients treated with different conditioning regimens or from those with different diseases complicating interpretation, because toxicity is both regimen- and disease-specific (Table 1). Although transplant regimen intensity may correlate with remission duration it is unclear if, at some point in dose intensity, a response plateau occurs independent of any further increase in regimen intensity. It is also unclear if any regimen may be viewed as curative. However, myeloablative as well as nonmyeloablative regimens, regardless of intensity, when used during the inflammatory stage of disease, have demonstrated a potent disease-ameliorating and remission-inducing effect.

In a single experienced center, nonmyeloablative autologous HSCT for patients with systemic lupus erythematosus, when performed as salvage therapy for treatment-refractory disease, resulted in marked serologic, clinical, and organ improvement, with 2% (1/50) treatment-related mortality and 50% probability of maintaining remission for 5 years.19 In comparison, a multicenter analysis of HSCT for systemic lupus erythematosus that included both myeloablative and nonmyeloablative regimens from 23 different centers reported a similar 55% 5-year disease-free survival, but treatment-related mortality was 13% (7/53).36

In patients with systemic sclerosis, autologous HSCT resulted in remarkable reversal of skin tightness, improved joint flexibility and quality of life, and reversal of pulmonary alveolitis.15,18 Two studies of nonmyeloablative regimens demonstrated 0% (0/10) and 4% (1/26) rates of treatment-related mortality,15,18 respectively, while a study using a myeloablative approach including total body irradiation reported a rate of 23% (8/34).11 Both myeloablative11 and nonmyeloablative18 approaches reported identical 64% 5-year event-free survival.

For multiple sclerosis, original transplantation regimens were myeloablative and performed predominantly in patients with secondary progressive and, to a lesser extent, primary progressive disease. In this subset of patients, intense myeloablative regimens generally failed to improve neurologic disability or to convincingly halt or change the rate of progressive neurologic disability.27,2931 High-intensity myeloablative regimens including total body irradiation or busulfan demonstrated high mortality (including MDS/leukemia),2931 whereas BEAM (carmustine, etoposide, cytarabine, melphalan), a less intense myeloablative regimen and the most common regimen used in Europe for multiple sclerosis, was better tolerated with no deaths among the last 53 patients undergoing transplantation.33 Despite lack of clinical benefit in patients with progressive multiple sclerosis, magnetic resonance imaging evidence of inflammation was abrogated, while loss of brain volume continued for 2 years before subsiding.41 In retrospect, the predominant pathophysiology in primary and secondary progressive multiple sclerosis is axonal degeneration, which would not be expected to improve after autologous HSCT, a method that allows delivery of intense immune suppression. Learning from these studies, a trial of autologous HSCT for relapsing-remitting multiple sclerosis, which is an immune-mediated inflammatory disease, was performed with a safer nonmyeloablative regimen. There was no treatment-related mortality, no disease progression, and two-thirds of patients had significant improvement in neurologic function (R.K. Burt, Y. Loh, B. Cohen, et al; Autologous non-myeloablative hematopoietic stem cell transplantation for relapsing-remitting multiple sclerosis reverses neurologic disability; unpublished data, 2008).

The lessons learned from multiple sclerosis—ie, treat early while the disease is inflammatory and use nonmyeloablative regimens with low risk of treatment-related mortality—were applied to patients with type 1 diabetes by using a nonmyeloablative regimen and selecting patients within 6 weeks of diagnosis before complete loss of insulin-producing islet cells. Autologous nonmyeloablative HSCT resulted in insulin-free remission of type 1 diabetes in 13 of 15 patients, and some patients have maintained normal blood glucose levels (as determined by levels of glycated hemoglobin) despite no insulin or other therapy for more than 3 years at last follow-up.17

Both rheumatoid arthritis and Crohn disease have been treated almost exclusively with nonmyeloablative regimens (Table 1) (R.M. Craig, Y. Oyama, K. Quigley, et al; Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with refractory Crohn disease; unpublished data, 2008).20,21 For rheumatoid arthritis, the majority achieved at least a 50% or greater response; demonstrated renewed responsiveness to traditional disease-modifying medications; had reduction in the rate of joint damage for at least 2 years after transplantation42; and, when compared with baseline, had improvement on health status assessment questionnaires for at least 5 years.43 Crohn disease, an immune-mediated disorder that arises from dysregulated immune responses to intestinal pathogens rather than from autoantigens per se, also remitted following autologous nonmyeloablative HSCT (R.M. Craig, Y. Oyama, K. Quigley, et al; Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with refractory Crohn disease; unpublished data, 2008).20

Other immune-mediated diseases that have been treated with encouraging initial results by autologous nonmyeloablative or low-intensity myeloablative regimens include chronic inflammatory demyelinating polyneuropathy,44 relapsing polychondritis,45 autoimmune-related retinitis and optic neuritis (Y. Oyama, R. K. Burt, C. Thirkill, E. Hanna, K. Merril, J. Keltner; Autoimmune-related retinopathy and optic neuropathy [ARRON] syndrome treated by autologous nonmyeloablative hematopoietic stem cell transplantation; unpublished data, 2008), dermatomyositis/polymyositis,46 celiac disease,22 polyarteritis nodosa,32 neurovascular Behçet disease,16 neurovascular Sjögren syndrome,16 Takyasu arteritis,47 and Wegner granulomatosus.16 Although results are not yet reported, several randomized controlled trials of autologous HSCT for autoimmune diseases are ongoing, most of which use nonmyeloablative regimens (Table 2).

Table Graphic Jump LocationTable 2. Ongoing Randomized Controlled Trials of Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases

Recently, allogeneic HSCT using a sibling's HSCs has also been reported for treatment of several autoimmune diseases.4852 Because it changes genetic predisposition to disease, allogeneic HSCT is considered more likely to cure autoimmune diseases compared with autologous HSCT. Graft-vs-host disease (GVHD), an often more lethal immune-mediated disease, is not an acceptable risk following allogeneic HSCT for autoimmune disorders rather than for malignancies and should be minimized by depletion of lymphocytes from the donor graft. Although yet unproven, some animal and limited human data48,49,53 suggest that an allogeneic graft-vs-autoimmunity effect may occur without GVHD via use of a lymphocyte-depleted graft.

When administered intravenously without prior chemotherapy or radiotherapy, MSCs have an immune suppressive effect that can ameliorate animal autoimmune diseases, although the mechanisms remain poorly defined.54 Human trials of MSCs for numerous immune-mediated diseases are being discussed and have been initiated in patients with GVHD. Since MSCs can be easily obtained and culture-expanded, bone marrow– or adipose tissue–derived MSCs from third parties or from the original marrow donor have been infused to modulate refractory GVHD, with reports of beneficial effects in nonrandomized, noncontrolled trials.55,56 In nonrandomized trials, 94% of patients with acute GVHD responded to intravenous infusion of MSCs.56

Stem Cells for Vascular Disease

Numerous animal models of different disease states have reproducibly and repeatedly demonstrated improvement in nonhematopoietic organ function after injection of unmanipulated marrow, peripheral blood, or umbilical cord blood cells, or of enriched HSCs/MSCs. Possible mechanisms by which blood or marrow stem cells improve visceral organ function is cell fusion or transdifferentiation, ie, the phenomenon of in vivo transformation or epigenetic reprogramming of HSCs into somatic cells of nonmarrow, nonhematopoietic lineage such as cardiomyocytes or neurons. While cell fusion and transdifferentiation both may occur ex vivo, the preponderance of evidence suggests that in vivo these mechanisms are not clinically relevant.

The mechanism by which blood- and marrow-derived cells improve nonhematopoietic organ function may be attributable to vasculogenesis from endothelial progenitor cells contained within PBSCs or from bone marrow mononuclear cells (BMMCs) that undergo lineage-specific differentiation into new blood vessels; alternatively, a concept gaining broader acceptance is that numerous stem cells provide a local paracrine or cell-help-cell effect. This chaperone or paracrine effect is mediated through release of growth factors, antiapoptotic proteins, angiogenic proteins, or other trophic factors, immune-modulating factors, and improvement of function through physical remodeling of 3-dimensional architecture. While the exact mechanisms remain controversial, a substantial number of clinical trials have been initiated using BMMCs, PBSCs, purified HSCs, or cultured MSCs to treat vascular diseases.

Acute Myocardial Infarction. In patients with ST-segment elevation myocardial infarction, standard treatment, including percutaneous coronary intervention of the infarct-related artery with or without stent placement plus anticoagulation, has been followed several days to weeks later by repeat percutaneous coronary intervention and intracoronary infusion of stem cells5773 (Table 3). The infused stem cells have included autologous unmanipulated BMMCs, CD133- or CD34-purified HSCs, unselected PBSCs, MSCs, or circulating progenitor cells (CPCs), which are peripheral blood cells cultured ex vivo to express endothelial characteristics. This mixture of cells, whether unselected, enriched for a stem cell marker, or manipulated in culture and from diverse sources, can be used in intracoronary or intramyocardial transplantation without a clear distinction of superiority of one cellular source or type over another.

Table Graphic Jump LocationTable 3. Clinical Trials of Stem Cell Therapy for Acute Myocardial Infarction With ≥30 Patients

The TOPCARE-AMI (Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction) study has published several reports comparing intracoronary transplantation of BMMCs with that of CPCs.57,7477 BMMC- as well as CPC-treated patients had similar improvements in infarct size, left ventricular ejection fraction (LVEF), coronary blood flow, and perfusion. Benefit was maintained for at least 12 months.57

The REPAIR-AMI (Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction) trial compared injection of intracoronary BMMCs with placebo 3 to 7 days after successful percutaneous coronary intervention and demonstrated improved recovery of left ventricular contractility in the cell treatment group.58 Benefit was also maintained for at least 12 months.59,78

The BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration) trial reported that BMMCs significantly improved LVEF 6 months after intracoronary transplantation.60 In contrast to the TOPCARE-AMI and REPAIR-AMI studies, the BOOST trial reported that the beneficial effect on LVEF was no longer significant after 12 months.61,62

The ASTAMI (Autologous Stem Cell Transplantation in Acute Myocardial Infarction) trial found no significant beneficial effects from intracoronary transplantation of BMMCs on LVEF.63 Compared with controls, BMMCs tended to improve LVEF as demonstrated by echocardiography (3.1%-2.1%) and single photon emission computed tomography (8.1%-7.0%) and tended to diminish infarct size (−11% to −7.8%). These changes were not significantly different.

The MAGIC (Myocardial Regeneration and Angiogenesis in Myocardial Infarction With G-CSF and Intracoronary Stem Cell Infusion) Cell 1 study compared intracoronary transplant of granulocyte colony–stimulating factor (G-CSF)–mobilized PBSCs vs treatment with G-CSF alone vs an untreated control group.64,79 Left ventricular ejection fraction improved in the PBSC group compared with the G-CSF-alone group, and there was an increase in restenosis in patients receiving G-CSF. The subsequent MAGIC Cell-3-DES (Myocardial Regeneration and Angiogenesis in Myocardial Infarction With G-CSF and Intracoronary Stem Cell Infusion-3-Drug Eluting Stents) study compared intracoronary transplantation of G-CSF–mobilized PBSCs vs an untreated control group.65 Left ventricular ejection fraction and remodeling improved compared with controls in the cell-treated group with acute myocardial infarction. Significant improvement in LVEF has been reported following injection of MSCs as well as of BMMCs, CPCs, and PBSCs.66

Taken as a whole, the results of intracoronary transplantation of progenitor cells following ST-segment elevation acute myocardial infarction are generally viewed as conveying a modest benefit. Single-group studies must be tempered by the realization that LVEF normally improves a few months after acute myocardial infarction, even without stem cell transplantation. Interstudy and intrastudy reproducibility of LVEF demonstrated by echocardiography and cardiovascular magnetic resonance imaging varies significantly, with conservative estimates of 8.6% and 2.4%, respectively.80 Reproducibility of LVEF measurement, therefore, overlaps with anticipated improvement (2%-5%) from stem cell transplantation. Nevertheless, 3 separate meta-analyses of controlled clinical trials of stem cell therapy in acute myocardial infarction have indicated modest benefit.8183

Chronic Coronary Artery Disease. In chronic ischemic cardiac disease or old myocardial infarction, noncontracting but viable myocardium, termed hibernating myocardium, is a physiologic response to hypoxic stress that halts the energy demands of contraction to prevent cardiomyocyte death. In the laboratory, hibernating myocardium is identified by areas of electromechanical dissociation, ie, myocardium that conducts electricity but does not contract.

Initial trials using stem cells in old myocardial infarction or chronic ischemia involved thoracotomy and coronary artery bypass graft surgery with simultaneous epicardial-directed intramyocardial injection of BMMCs or PBSCs while the heart was still arrested during cardiopulmonary bypass. Subsequently, most patients with chronic ischemic heart disease received stem cells by either percutaneous intracoronary or endomyocardial delivery without undergoing simultaneous coronary artery bypass graft surgery8499 (Table 4). Erbs et al84 treated chronic (>30-day) total coronary occlusion with recanalization, followed 10 days later by randomization to intracoronary CPC infusion or no cells. Patients receiving CPCs had significant improvement in LVEF. In the IACT (Intracoronary Autologous Bone Marrow Cell Transplantation in Chronic Coronary Artery Disease) trial, Strauer et al85 treated old myocardial infarction (5 months to 8.5 years prior) with intracoronary BMMCs, with significant improvement in LVEF. Assmus et al86 randomized 75 patients in the TOPCARE-CHD (Transplantation of Progenitor Cells and Recovery of Left Ventricular Function in Patients With Chronic Ischemic Heart Disease) trial to intracoronary infusion of BMMCs, CPCs, or no cells. Bone marrow mononuclear cells, but not CPCs, improved LVEF compared with controls86; if heart failure was present, injection of BMMCs resulted in significant reduction of brain natriuretic peptide, a serum marker for heart failure.87

Table Graphic Jump LocationTable 4. Clinical Trials of Stem Cell Therapy for Chronic Myocardial Ischemia and/or Heart Failure With ≥20 Patients

In summary, pump failure has been a historically vexing problem and, despite maximizing medical therapy, often progressive and irreversible. Symptomatic relief of pain may be a placebo effect. Nevertheless, stem cell treatment of chronic myocardial ischemia has generally been reported to increase regional perfusion, wall motion, and global LVEF, and to relieve angina pectoris. A recent meta-analysis reported a modest association between blood- or marrow-derived stem cell injection and improvement in chronic ischemic heart disease.81

Peripheral Vascular Disease. Tissue limb ischemia from peripheral vascular disease usually manifests in the lower extremities and may be due to thromboangiitis obliterans (Buerger disease) or atherosclerosis obliterans. The mainstay of treatment for peripheral vascular disease has been surgical revascularization. Patients with critical limb ischemia that have exhausted operative revascularization procedures are traditionally treated by limb amputation. Several reports have suggested that injection of blood- or bone marrow–derived stem cells into the affected limb may have some benefit. As in cardiac disease, a variety of stem cell sources have been used, including unselected bone marrow, G-CSF–mobilized PBSCs, MSCs, CPCs, and purified CD34 or CD133 stem cells obtained from marrow or peripheral blood.

Progenitor cells are injected directly via a syringe through a 22- to 26-gauge needle into multiple sites 1 to 3 cm apart into the gastrocnemius/soleus muscle or into the foot or quadriceps muscle, or both, of the involved leg. The procedure has generally been performed safely, although 1 case of an arteriovenous fistula at the injection site has been reported.100 While most investigators prefer percutaneous injection into the muscle, equally encouraging results are obtained by intra-arterial injection of cells into the involved extremity or by fenestration (ie, puncturing the tibia) to allow bone marrow cells to leak into adjacent muscle.101103

Most patients experience relief of symptomatic pain, limb salvage, and functional improvement. In some cases, ischemic ulcer healing and the ankle-brachial index (a measure of ankle blood flow) improves. In 2 studies, all patients with thromboangiitis obliterans responded to therapy.103,104 In contrast, depending on the report, approximately two-thirds (70%) of patients with atherosclerosis obliterans responded.105

The TACT (Therapeutic Angiogenesis by Cell Transplantation) trial enrolled patients with bilateral (n = 22) or unilateral (n = 25) peripheral vascular disease.106 Investigators injected one leg with BMMCs and the other with blood. The pain-free walking time, ankle-brachial index, and transcutaneous oxygen pressure improved significantly in the BMMC-injected legs compared with those injected with blood. A second randomized trial, TAM-PAD (Transplant of Autologous Mononuclear Bone Marrow Cells in Peripheral Arterial Disease), combined intra-arterial and intramuscular injection of BMMCs.102 The group receiving BMMCs (n = 13) had significantly improved pain-free walking time, ankle-brachial index, and capillary-venous oxygen saturation.102

Duration of improvement following injection of progenitor cells remains unclear but may persist beyond 1 year. The dose of injected CD34+ cells may affect efficacy.107 Injected BMMCs are thought to secrete numerous cytokines, such as vascular endothelial growth factor, that may induce local angiogenesis, recruit circulating CD34+ cells for vasculogenesis, or release factors such as nitric oxide that augment local endothelial cell attempts at vasodilation.108

The use of adult HSCs is rapidly expanding beyond the traditional applications for malignancy. In autoimmune diseases, chemotherapy to ablate the disease-causing immune system is followed by infusion of unmanipulated autologous bone marrow, PBSCs, or purified CD34+ HSCs to reconstitute immunopoiesis or hematopoiesis.

Autologous HSCT, while probably not a “cure,” appears to be a potentially useful clinical approach available to ameliorate autoimmune disease activity. However, HSCT has been complicated by significant treatment-related mortality and late MDS/leukemia when intense myeloablative regimens are used, indicating the need for development of safer nonmyeloablative regimens and restriction of this technique to experienced centers. Allogeneic (sibling or umbilical cord blood) transplantation of HSCs ultimately may prove to be the elusive “cure” for some autoimmune disorders, but allogeneic HSCT must be performed without risk of GVHD by lymphocyte depletion of the donor graft, and whether an allogeneic graft-vs- autoimmunity effect can occur without GVHD remains unproven.

Unmanipulated bone marrow, peripheral blood stem cells, and purified HSCs and MSCs infused without prior chemotherapy have been used to facilitate tissue repair following ischemic injury. Randomized trials have suggested modest benefit with little toxicity from stem cell therapy in cardiac disease and peripheral vascular disease. The mechanisms of this effect remain undefined and have evolved from cell fusion and transdifferentiation to endothelial progenitor cell–derived vasculogenesis and local paracrine effects. Clinical trials are needed to determine the most appropriate cell type, dose, method, and timing of delivery for use of HSCs in cardiovascular disease. Similar trials are also being considered or have recently been initiated in liver disease,109111 cerebrovascular disease, and spinal cord injury.

Corresponding Author: Richard K. Burt, MD, Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, 750 N Lake Shore Dr, Room 649, Chicago, IL 60611 (rburt@northwestern.edu).

Author Contributions: Dr Burt had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Burt, Beohar.

Acquisition of data: Burt, Loh, Barr, Wen, Rapp.

Analysis and interpretation of data: Burt, Pearce, Beohar, Craig, Rapp, Kessler.

Drafting of the manuscript: Burt, Beohar.

Critical revision of the manuscript for important intellectual content: Burt, Loh, Pearce, Beohar, Barr, Craig, Wen, Rapp, Kessler.

Administrative, technical, or material support: Burt, Loh, Beohar, Barr, Wen.

Financial Disclosures: None reported.

Additional Contributions: We thank Donald Orlic, PhD (National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland), and Douglas Losordo, MD (Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois), for critical review of the manuscript. Neither of these individuals received extra compensation for their contributions.

van Os R, Kamminga LM, de Haan G. Stem cell assays: something old, something new, something borrowed.  Stem Cells. 2004;22(7):1181-1190
PubMed   |  Link to Article
Jordan CT, Lemischka IR. Clonal and systemic analysis of long-term hematopoiesis in the mouse.  Genes Dev. 1990;4(2):220-232
PubMed   |  Link to Article
Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells.  Annu Rev Cell Dev Biol. 1995;11:35-71
PubMed   |  Link to Article
Berenson RJ, Andrews RG, Bensinger WI,  et al.  Antigen CD34+ marrow cells engraft lethally irradiated baboons.  J Clin Invest. 1988;81(3):951-955
PubMed   |  Link to Article
Civin CI, Trischmann T, Kadan NS,  et al.  Highly purified CD34-positive cells reconstitute hematopoiesis.  J Clin Oncol. 1996;14(8):2224-2233
PubMed
Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7.  Blood. 2000;95(9):2813-2820
PubMed
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.  Cell Tissue Kinet. 1970;3(4):393-403
PubMed
Dominici M, Le Blanc K, Mueller I,  et al.  Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement.  Cytotherapy. 2006;8(4):315-317
PubMed   |  Link to Article
Pittenger MF, Mackay AM, Beck SC,  et al.  Multilineage potential of adult human mesenchymal stem cells.  Science. 1999;284(5411):143-147
PubMed   |  Link to Article
Gratwohl A, Passweg J, Bocelli-Tyndall C,  et al; Autoimmune Diseases Working Party of the European Group for Blood and Marrow Transplantation (EBMT).  Autologous hematopoietic stem cell transplantation for autoimmune diseases.  Bone Marrow Transplant. 2005;35(9):869-879
PubMed   |  Link to Article
Nash RA, McSweeney PA, Crofford LJ,  et al.  High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study.  Blood. 2007;110(4):1388-1396
PubMed   |  Link to Article
Burt RK, Marmont A, Oyama Y,  et al.  Randomized controlled trials of autologous hematopoietic stem cell transplantation for autoimmune diseases: the evolution from myeloablative to lymphoablative transplant regimens.  Arthritis Rheum. 2006;54(12):3750-3760
PubMed   |  Link to Article
Statkute L, Verda L, Oyama Y,  et al.  Mobilization, harvesting and selection of peripheral blood stem cells in patients with autoimmune diseases undergoing autologous hematopoietic stem cell transplantation.  Bone Marrow Transplant. 2007;39(6):317-329
PubMed   |  Link to Article
Samijn JP, te Boekhorst PA, Mondria T,  et al.  Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis.  J Neurol Neurosurg Psychiatry. 2006;77(1):46-50
PubMed   |  Link to Article
Oyama Y, Barr WG, Statkute L,  et al.  Autologous non-myeloablative hematopoietic stem cell transplantation in patients with systemic sclerosis.  Bone Marrow Transplant. 2007;40(6):549-555
PubMed   |  Link to Article
Statkute L, Oyama Y, Barr WG,  et al.  Autologous non-myeloablative hematopoietic stem cell transplantation for refractory systemic vasculitis [published online ahead of print October 18, 2007].  Ann Rheum Dis
PubMed  |  Link to Article
Voltarelli JC, Couri CE, Stracieri AB,  et al.  Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus.  JAMA. 2007;297(14):1568-1576
PubMed   |  Link to Article
Vonk MC, Marjanovic Z, van den Hoogen FH,  et al.  Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis [published online ahead of print May 25, 2007].  Ann Rheum Dis. 2008;67(1):98-104
PubMed  |  Link to Article   |  Link to Article
Burt RK, Traynor A, Statkute L,  et al.  Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus.  JAMA. 2006;295(5):527-535
PubMed   |  Link to Article
Oyama Y, Craig RM, Traynor AE,  et al.  Autologous hematopoietic stem cell transplantation in patients with refractory Crohn's disease.  Gastroenterology. 2005;128(3):552-563
PubMed   |  Link to Article
Snowden JA, Passweg J, Moore JJ,  et al.  Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR.  J Rheumatol. 2004;31(3):482-488
PubMed
Al-toma A, Visser OJ, van Roessel HM,  et al.  Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells.  Blood. 2007;109(5):2243-2249
PubMed   |  Link to Article
Ni XS, Ouyang J, Zhu WH, Wang C, Chen B. Autologous hematopoietic stem cell transplantation for progressive multiple sclerosis: report of efficacy and safety at three yr of follow up in 21 patients.  Clin Transplant. 2006;20(4):485-489
PubMed   |  Link to Article
Xu J, Ji BX, Su L, Dong HQ, Sun XJ, Liu CY. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis.  Chin Med J (Engl). 2006;119(22):1851-1855
PubMed
Capello E, Saccardi R, Murialdo A,  et al; Italian GITMO-Neuro Intergroup on ASCT for Multiple Sclerosis.  Intense immunosuppression followed by autologous stem cell transplantation in severe multiple sclerosis.  Neurol Sci. 2005;26:(suppl 4)  S200-S203
PubMed   |  Link to Article
Carreras E, Saiz A, Marín P,  et al.  CD34+ selected autologous peripheral blood stem cell transplantation for multiple sclerosis: report of toxicity and treatment results at one year of follow-up in 15 patients.  Haematologica. 2003;88(3):306-314
PubMed
Fassas A, Passweg JR, Anagnostopoulos A,  et al; Autoimmune Disease Working Party of the EBMT (European Group for Blood and Marrow Transplantation).  Hematopoietic stem cell transplantation for multiple sclerosis: a retrospective multicenter study.  J Neurol. 2002;249(8):1088-1097[published correction appears in J Neurol. 2002;249(11)1619]
PubMed   |  Link to Article
Kozák T, Havrdová E, Pit’ha J,  et al.  High-dose immunosuppressive therapy with PBPC support in the treatment of poor risk multiple sclerosis.  Bone Marrow Transplant. 2000;25(5):525-531
PubMed   |  Link to Article
Burt RK, Cohen BA, Russell E,  et al.  Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores.  Blood. 2003;102(7):2373-2378
PubMed   |  Link to Article
Nash RA, Bowen JD, McSweeney PA,  et al.  High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis.  Blood. 2003;102(7):2364-2372
PubMed   |  Link to Article
Openshaw H, Lund BT, Kashyap A,  et al.  Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring.  Biol Blood Marrow Transplant. 2000;6(5A):563-575
PubMed   |  Link to Article
Daikeler T, Kötter I, Bocelli Tyndall C,  et al; EBMT Autoimmune Diseases Working Party.  Haematopoietic stem cell transplantation for vasculitis including Behcet's disease and polychondritis: a retrospective analysis of patients recorded in the European Bone Marrow Transplantation and European League Against Rheumatism databases and a review of the literature.  Ann Rheum Dis. 2007;66(2):202-207
PubMed   |  Link to Article
Saccardi R, Kozak T, Bocelli-Tyndall C,  et al; Autoimmune Diseases Working Party of EBMT.  Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database.  Mult Scler. 2006;12(6):814-823
PubMed   |  Link to Article
De Kleer IM, Brinkman DM, Ferster A,  et al.  Autologous stem cell transplantation for refractory juvenile idiopathic arthritis: analysis of clinical effects, mortality, and transplant related morbidity.  Ann Rheum Dis. 2004;63(10):1318-1326
PubMed   |  Link to Article
Farge D, Passweg J, van Laar JM,  et al.  Autologous stem cell transplantation in the treatment of systemic sclerosis: report from the EBMT/EULAR registry.  Ann Rheum Dis. 2004;63(8):974-981
PubMed   |  Link to Article
Jayne D, Passweg J, Marmont A,  et al; European Group for Blood and Marrow Transplantation, European League Against Rheumatism Registry.  Autologous stem cell transplantation for systemic lupus erythematosus.  Lupus. 2004;13(3):168-176
PubMed   |  Link to Article
Binks M, Passweg JR, Furst D,  et al.  Phase I/II trial of autologous stem cell transplantation in systemic sclerosis: procedure related mortality and impact on skin disease.  Ann Rheum Dis. 2001;60(6):577-584
PubMed   |  Link to Article
Montoto S, Canals C, Rohatiner AZ,  et al; EBMT Lymphoma Working Party.  Long-term follow-up of high-dose treatment with autologous haematopoietic progenitor cell support in 693 patients with follicular lymphoma: an EBMT registry study [published online ahead of print July 19, 2007].  Leukemia. 2007;21(11):2324-2331
PubMed  |  Link to Article   |  Link to Article
Brown JR, Feng Y, Gribben JG,  et al.  Long-term survival after autologous bone marrow transplantation for follicular lymphoma in first remission.  Biol Blood Marrow Transplant. 2007;13(9):1057-1065
PubMed   |  Link to Article
Loh Y, Oyama Y, Statkute L,  et al.  Development of a secondary autoimmune disorder after hematopoietic stem cell transplantation for autoimmune diseases: role of conditioning regimen used.  Blood. 2007;109(6):2643-2648
PubMed   |  Link to Article
Rocca MA, Mondria T, Valsasina P,  et al.  A three-year study of brain atrophy after autologous hematopoietic stem cell transplantation in rapidly evolving secondary progressive multiple sclerosis.  AJNR Am J Neuroradiol. 2007;28(9):1659-1661
PubMed   |  Link to Article
Verburg RJ, Flierman R, Sont JK,  et al.  Outcome of intensive immunosuppression and autologous stem cell transplantation in patients with severe rheumatoid arthritis is associated with the composition of synovial T cell infiltration.  Ann Rheum Dis. 2005;64(10):1397-1405
PubMed   |  Link to Article
Teng YK, Verburg RJ, Sont JK, van den Hout WB, Breedveld FC, van Laar JM. Long-term followup of health status in patients with severe rheumatoid arthritis after high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation.  Arthritis Rheum. 2005;52(8):2272-2276
PubMed   |  Link to Article
Oyama Y, Sufit R, Loh Y,  et al.  Autologous nonmyeloablative hematopoietic stem cell transplantation for refractory CIDP.  Neurology. 2007;69(18):1802-1803
PubMed   |  Link to Article
Rosen O, Thiel A, Massenkeil G,  et al.  Autologous stem-cell transplantation in refractory autoimmune diseases after in vivo immunoablation and ex vivo depletion of mononuclear cells.  Arthritis Res. 2000;2(4):327-336
PubMed   |  Link to Article
Oryoji K, Himeji D, Nagafuji K,  et al.  Successful treatment of rapidly progressive interstitial pneumonia with autologous peripheral blood stem cell transplantation in a patient with dermatomyositis.  Clin Rheumatol. 2005;24(6):637-640
PubMed   |  Link to Article
Voltarelli JC, Oliveira MC, Stracieri AB,  et al.  Haematopoietic stem cell transplantation for refractory Takayasu's arteritis.  Rheumatology (Oxford). 2004;43(10):1308-1309
PubMed   |  Link to Article
Burt RK, Oyama Y, Verda L,  et al.  Induction of remission of severe and refractory rheumatoid arthritis by allogeneic mixed chimerism.  Arthritis Rheum. 2004;50(8):2466-2470
PubMed   |  Link to Article
Loh Y, Oyama Y, Statkute L,  et al.  Non-myeloablative allogeneic hematopoietic stem cell transplantation for severe systemic sclerosis: graft-versus-autoimmunity without graft-versus-host disease? [published online ahead of print February 19, 2007].  Bone Marrow Transplant. 2007;39(7):435-437
PubMed  |  Link to Article   |  Link to Article
Nash RA, McSweeney PA, Nelson JL,  et al.  Allogeneic marrow transplantation in patients with severe systemic sclerosis: resolution of dermal fibrosis.  Arthritis Rheum. 2006;54(6):1982-1986
PubMed   |  Link to Article
Marmont AM, Gualandi F, Piaggio G,  et al.  Allogeneic bone marrow transplantation (BMT) for refractory Behcet's disease with severe CNS involvement.  Bone Marrow Transplant. 2006;37(11):1061-1063
PubMed   |  Link to Article
Marmont AM, Gualandi F, Van Lint MT, Bacigalupo A. Refractory Evans' syndrome treated with allogeneic SCT followed by DLI: demonstration of a graft-versus-autoimmunity effect.  Bone Marrow Transplant. 2003;31(5):399-402
PubMed   |  Link to Article
Verda L, An Kim D, Ikehara S,  et al.  Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in nod mice [published online ahead of print November 1, 2007].  Stem Cells. 2008;26(2):381-386
PubMed   |  Link to Article
Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression?  Trends Immunol. 2007;28(5):219-226
PubMed   |  Link to Article
Ringdén O, Uzunel M, Rasmusson I,  et al.  Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease.  Transplantation. 2006;81(10):1390-1397
PubMed   |  Link to Article
Fang B, Song YP, Liao LM, Han Q, Zhao RC. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells.  Bone Marrow Transplant. 2006;38(5):389-390
PubMed   |  Link to Article
Schächinger V, Assmus B, Britten MB,  et al.  Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial.  J Am Coll Cardiol. 2004;44(8):1690-1699
PubMed   |  Link to Article
Schächinger V, Erbs S, Elsasser A,  et al.  Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.  N Engl J Med. 2006;355(12):1210-1221
PubMed   |  Link to Article
Schächinger V, Erbs S, Elsässer A,  et al;  REPAIR-AMI Investigators.  Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial.  Eur Heart J. 2006;27(3):2775-2783
PubMed   |  Link to Article
Wollert KC, Meyer GP, Lotz J,  et al.  Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.  Lancet. 2004;364(9429):141-148
PubMed   |  Link to Article
Meyer GP, Wollert KC, Lotz J,  et al.  Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.  Circulation. 2006;113(10):1287-1294
PubMed   |  Link to Article
Schaefer A, Meyer GP, Fuchs M,  et al.  Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial.  Eur Heart J. 2006;27(8):929-935
PubMed   |  Link to Article
Lunde K, Solheim S, Aakhus S,  et al.  Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.  N Engl J Med. 2006;355(12):1199-1209
PubMed   |  Link to Article
Kang HJ, Kim HS, Koo BK,  et al.  Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial.  Am Heart J. 2007;153(2):237.e1-8
PubMed   |  Link to Article
Kang HJ, Lee HY, Na SH,  et al.  Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial.  Circulation. 2006;114(1):(suppl)  I145-I151
PubMed
Chen SL, Fang WW, Ye F,  et al.  Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.  Am J Cardiol. 2004;94(1):92-95
PubMed   |  Link to Article
Janssens S, Dubois C, Bogaert J,  et al.  Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.  Lancet. 2006;367(9505):113-121
PubMed   |  Link to Article
Bartunek J, Vanderheyden M, Vandekerckhove B,  et al.  Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety.  Circulation. 2005;112(9):(suppl)  I178-I183
PubMed
Mansour S, Vanderheyden M, De Bruyne B,  et al.  Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction.  J Am Coll Cardiol. 2006;47(8):1727-1730
PubMed   |  Link to Article
Li ZQ, Zhang M, Jing YZ,  et al.  The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI).  Int J Cardiol. 2007;115(1):52-56
PubMed   |  Link to Article
Meluzin J, Mayer J, Groch L,  et al.  Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function.  Am Heart J. 2006;152(5):975.e9-15
PubMed   |  Link to Article
Tatsumi T, Ashihara E, Yasui T,  et al.  Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction.  Circ J. 2007;71(8):1199-1207
PubMed   |  Link to Article
Choi JH, Choi J, Lee WS,  et al.  Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction.  Circ J. 2007;71(4):486-494
PubMed   |  Link to Article
Assmus B, Schachinger V, Teupe C,  et al.  Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI).  Circulation. 2002;106(24):3009-3017
PubMed   |  Link to Article
Britten MB, Abolmaali ND, Assmus B,  et al.  Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging.  Circulation. 2003;108(18):2212-2218
PubMed   |  Link to Article
Döbert N, Britten M, Assmus B,  et al.  Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT.  Eur J Nucl Med Mol Imaging. 2004;31(8):1146-1151
PubMed   |  Link to Article
Schächinger V, Assmus B, Honold J,  et al.  Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial.  Clin Res Cardiol. 2006;95(1):13-22
PubMed   |  Link to Article
Erbs S, Linke A, Schächinger V,  et al.  Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial.  Circulation. 2007;116(4):366-374
PubMed   |  Link to Article
Kang HJ, Kim HS, Zhang SY,  et al.  Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial.  Lancet. 2004;363(9411):751-756
PubMed   |  Link to Article
Grothues F, Smith GC, Moon JC,  et al.  Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy.  Am J Cardiol. 2002;90(1):29-34
PubMed   |  Link to Article
Abdel-Latif A, Bolli R, Tleyjeh IM,  et al.  Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis.  Arch Intern Med. 2007;167(10):989-997
PubMed   |  Link to Article
Lipinski MJ, Biondi-Zoccai GG, Abbate A,  et al.  Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials.  J Am Coll Cardiol. 2007;50(18):1761-1767
PubMed   |  Link to Article
Hristov M, Heussen N, Schober A, Weber C. Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis.  J Cell Mol Med. 2006;10(3):727-733
PubMed   |  Link to Article
Erbs S, Linke A, Adams V,  et al.  Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study.  Circ Res. 2005;97(8):756-762
PubMed   |  Link to Article
Strauer BE, Brehm M, Zeus T,  et al.  Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study.  J Am Coll Cardiol. 2005;46(9):1651-1658
PubMed   |  Link to Article
Assmus B, Honold J, Schachinger V,  et al.  Transcoronary transplantation of progenitor cells after myocardial infarction.  N Engl J Med. 2006;355(12):1222-1232
PubMed   |  Link to Article
Assmus B, Fischer-Rasokat U, Honold J,  et al; TOPCARE-CHD Registry.  Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry.  Circ Res. 2007;100(8):1234-1241
PubMed   |  Link to Article
Perin EC, Dohmann HF, Borojevic R,  et al.  Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy.  Circulation. 2004;110(11):(suppl 1)  II213-II218
PubMed   |  Link to Article
Perin EC, Dohmann HF, Borojevic R,  et al.  Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure.  Circulation. 2003;107(18):2294-2302
PubMed   |  Link to Article
Patel AN, Geffner L, Vina RF,  et al.  Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study.  J Thorac Cardiovasc Surg. 2005;130(6):1631-1638
PubMed   |  Link to Article
Hendrikx M, Hensen K, Clijsters C,  et al.  Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial.  Circulation. 2006;114(1):(suppl)  I101-I107
PubMed   |  Link to Article
Fuchs S, Kornowski R, Weisz G,  et al.  Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease.  Am J Cardiol. 2006;97(6):823-829
PubMed   |  Link to Article
Beeres SL, Bax JJ, Dibbets-Schneider P,  et al.  Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results.  Am Heart J. 2006;152(4):684.e11-6
PubMed   |  Link to Article
Gao LR, Wang ZG, Zhu ZM,  et al.  Effect of intracoronary transplantation of autologous bone marrow-derived mononuclear cells on outcomes of patients with refractory chronic heart failure secondary to ischemic cardiomyopathy.  Am J Cardiol. 2006;98(5):597-602
PubMed   |  Link to Article
Chen S, Liu Z, Tian N,  et al.  Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery.  J Invasive Cardiol. 2006;18(11):552-556
PubMed
Manginas A, Goussetis E, Koutelou M,  et al.  Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(-) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction.  Catheter Cardiovasc Interv. 2007;69(6):773-781
PubMed   |  Link to Article
Losordo DW, Schatz RA, White CJ,  et al.  Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial.  Circulation. 2007;115(25):3165-3172
PubMed   |  Link to Article
Mocini D, Staibano M, Mele L,  et al.  Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting.  Am Heart J. 2006;151(1):192-197
PubMed   |  Link to Article
Stamm C, Kleine HD, Choi YH,  et al.  Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies.  J Thorac Cardiovasc Surg. 2007;133(3):717-725
PubMed   |  Link to Article
Miyamoto K, Nishigami K, Nagaya N,  et al.  Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans.  Circulation. 2006;114(24):2679-2684
PubMed   |  Link to Article
Lenk K, Adams V, Lurz P,  et al.  Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia.  Eur Heart J. 2005;26(18):1903-1909
PubMed   |  Link to Article
Bartsch T, Brehm M, Zeus T, Kögler G, Wernet P, Strauer BE. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study).  Clin Res Cardiol. 2007;96(12):891-899
PubMed   |  Link to Article
Kim DI, Kim MJ, Joh JH,  et al.  Angiogenesis facilitated by autologous whole bone marrow stem cell transplantation for Buerger's disease.  Stem Cells. 2006;24(5):1194-1200
PubMed   |  Link to Article
Durdu S, Akar AR, Arat M, Sancak T, Eren NT, Ozyurda U. Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II-III thromboangiitis obliterans.  J Vasc Surg. 2006;44(4):732-739
PubMed   |  Link to Article
Kawamura A, Horie T, Tsuda I,  et al.  Prevention of limb amputation in patients with limbs ulcers by autologous peripheral blood mononuclear cell implantation.  Ther Apher Dial. 2005;9(1):59-63
PubMed   |  Link to Article
Tateishi-Yuyama E, Matsubara H, Murohara T,  et al.  Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial.  Lancet. 2002;360(9331):427-435
PubMed   |  Link to Article
Saigawa T, Kato K, Ozawa T,  et al.  Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells.  Circ J. 2004;68(12):1189-1193
PubMed   |  Link to Article
Ishida A, Ohya Y, Sakuda H,  et al.  Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia.  Circ J. 2005;69(10):1260-1265
PubMed   |  Link to Article
Terai S, Ishikawa T, Omori K,  et al.  Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy.  Stem Cells. 2006;24(10):2292-2298
PubMed   |  Link to Article
Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M,  et al.  Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis.  Arch Iran Med. 2007;10(4):459-466
PubMed
am Esch JS II, Knoefel WT, Klein M,  et al.  Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration.  Stem Cells. 2005;23(4):463-470
PubMed   |  Link to Article

Figures

Place holder to copy figure label and caption
Figure. Flow of Eligible Studies of Stem Cell Transplantation for Nonmalignant Nonhematologic Diseases
Graphic Jump Location

aAssessed both acute infarction and chronic ischemia; this study is also included in the 3 meta-analyses shown above.

Tables

Table Graphic Jump LocationTable 1. Treatment-Related Mortality Following Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseasesa
Table Graphic Jump LocationTable 2. Ongoing Randomized Controlled Trials of Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases
Table Graphic Jump LocationTable 3. Clinical Trials of Stem Cell Therapy for Acute Myocardial Infarction With ≥30 Patients
Table Graphic Jump LocationTable 4. Clinical Trials of Stem Cell Therapy for Chronic Myocardial Ischemia and/or Heart Failure With ≥20 Patients

References

van Os R, Kamminga LM, de Haan G. Stem cell assays: something old, something new, something borrowed.  Stem Cells. 2004;22(7):1181-1190
PubMed   |  Link to Article
Jordan CT, Lemischka IR. Clonal and systemic analysis of long-term hematopoiesis in the mouse.  Genes Dev. 1990;4(2):220-232
PubMed   |  Link to Article
Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells.  Annu Rev Cell Dev Biol. 1995;11:35-71
PubMed   |  Link to Article
Berenson RJ, Andrews RG, Bensinger WI,  et al.  Antigen CD34+ marrow cells engraft lethally irradiated baboons.  J Clin Invest. 1988;81(3):951-955
PubMed   |  Link to Article
Civin CI, Trischmann T, Kadan NS,  et al.  Highly purified CD34-positive cells reconstitute hematopoiesis.  J Clin Oncol. 1996;14(8):2224-2233
PubMed
Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC133 and CD7.  Blood. 2000;95(9):2813-2820
PubMed
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.  Cell Tissue Kinet. 1970;3(4):393-403
PubMed
Dominici M, Le Blanc K, Mueller I,  et al.  Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement.  Cytotherapy. 2006;8(4):315-317
PubMed   |  Link to Article
Pittenger MF, Mackay AM, Beck SC,  et al.  Multilineage potential of adult human mesenchymal stem cells.  Science. 1999;284(5411):143-147
PubMed   |  Link to Article
Gratwohl A, Passweg J, Bocelli-Tyndall C,  et al; Autoimmune Diseases Working Party of the European Group for Blood and Marrow Transplantation (EBMT).  Autologous hematopoietic stem cell transplantation for autoimmune diseases.  Bone Marrow Transplant. 2005;35(9):869-879
PubMed   |  Link to Article
Nash RA, McSweeney PA, Crofford LJ,  et al.  High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study.  Blood. 2007;110(4):1388-1396
PubMed   |  Link to Article
Burt RK, Marmont A, Oyama Y,  et al.  Randomized controlled trials of autologous hematopoietic stem cell transplantation for autoimmune diseases: the evolution from myeloablative to lymphoablative transplant regimens.  Arthritis Rheum. 2006;54(12):3750-3760
PubMed   |  Link to Article
Statkute L, Verda L, Oyama Y,  et al.  Mobilization, harvesting and selection of peripheral blood stem cells in patients with autoimmune diseases undergoing autologous hematopoietic stem cell transplantation.  Bone Marrow Transplant. 2007;39(6):317-329
PubMed   |  Link to Article
Samijn JP, te Boekhorst PA, Mondria T,  et al.  Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis.  J Neurol Neurosurg Psychiatry. 2006;77(1):46-50
PubMed   |  Link to Article
Oyama Y, Barr WG, Statkute L,  et al.  Autologous non-myeloablative hematopoietic stem cell transplantation in patients with systemic sclerosis.  Bone Marrow Transplant. 2007;40(6):549-555
PubMed   |  Link to Article
Statkute L, Oyama Y, Barr WG,  et al.  Autologous non-myeloablative hematopoietic stem cell transplantation for refractory systemic vasculitis [published online ahead of print October 18, 2007].  Ann Rheum Dis
PubMed  |  Link to Article
Voltarelli JC, Couri CE, Stracieri AB,  et al.  Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus.  JAMA. 2007;297(14):1568-1576
PubMed   |  Link to Article
Vonk MC, Marjanovic Z, van den Hoogen FH,  et al.  Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis [published online ahead of print May 25, 2007].  Ann Rheum Dis. 2008;67(1):98-104
PubMed  |  Link to Article   |  Link to Article
Burt RK, Traynor A, Statkute L,  et al.  Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus.  JAMA. 2006;295(5):527-535
PubMed   |  Link to Article
Oyama Y, Craig RM, Traynor AE,  et al.  Autologous hematopoietic stem cell transplantation in patients with refractory Crohn's disease.  Gastroenterology. 2005;128(3):552-563
PubMed   |  Link to Article
Snowden JA, Passweg J, Moore JJ,  et al.  Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR.  J Rheumatol. 2004;31(3):482-488
PubMed
Al-toma A, Visser OJ, van Roessel HM,  et al.  Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells.  Blood. 2007;109(5):2243-2249
PubMed   |  Link to Article
Ni XS, Ouyang J, Zhu WH, Wang C, Chen B. Autologous hematopoietic stem cell transplantation for progressive multiple sclerosis: report of efficacy and safety at three yr of follow up in 21 patients.  Clin Transplant. 2006;20(4):485-489
PubMed   |  Link to Article
Xu J, Ji BX, Su L, Dong HQ, Sun XJ, Liu CY. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis.  Chin Med J (Engl). 2006;119(22):1851-1855
PubMed
Capello E, Saccardi R, Murialdo A,  et al; Italian GITMO-Neuro Intergroup on ASCT for Multiple Sclerosis.  Intense immunosuppression followed by autologous stem cell transplantation in severe multiple sclerosis.  Neurol Sci. 2005;26:(suppl 4)  S200-S203
PubMed   |  Link to Article
Carreras E, Saiz A, Marín P,  et al.  CD34+ selected autologous peripheral blood stem cell transplantation for multiple sclerosis: report of toxicity and treatment results at one year of follow-up in 15 patients.  Haematologica. 2003;88(3):306-314
PubMed
Fassas A, Passweg JR, Anagnostopoulos A,  et al; Autoimmune Disease Working Party of the EBMT (European Group for Blood and Marrow Transplantation).  Hematopoietic stem cell transplantation for multiple sclerosis: a retrospective multicenter study.  J Neurol. 2002;249(8):1088-1097[published correction appears in J Neurol. 2002;249(11)1619]
PubMed   |  Link to Article
Kozák T, Havrdová E, Pit’ha J,  et al.  High-dose immunosuppressive therapy with PBPC support in the treatment of poor risk multiple sclerosis.  Bone Marrow Transplant. 2000;25(5):525-531
PubMed   |  Link to Article
Burt RK, Cohen BA, Russell E,  et al.  Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores.  Blood. 2003;102(7):2373-2378
PubMed   |  Link to Article
Nash RA, Bowen JD, McSweeney PA,  et al.  High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis.  Blood. 2003;102(7):2364-2372
PubMed   |  Link to Article
Openshaw H, Lund BT, Kashyap A,  et al.  Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring.  Biol Blood Marrow Transplant. 2000;6(5A):563-575
PubMed   |  Link to Article
Daikeler T, Kötter I, Bocelli Tyndall C,  et al; EBMT Autoimmune Diseases Working Party.  Haematopoietic stem cell transplantation for vasculitis including Behcet's disease and polychondritis: a retrospective analysis of patients recorded in the European Bone Marrow Transplantation and European League Against Rheumatism databases and a review of the literature.  Ann Rheum Dis. 2007;66(2):202-207
PubMed   |  Link to Article
Saccardi R, Kozak T, Bocelli-Tyndall C,  et al; Autoimmune Diseases Working Party of EBMT.  Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database.  Mult Scler. 2006;12(6):814-823
PubMed   |  Link to Article
De Kleer IM, Brinkman DM, Ferster A,  et al.  Autologous stem cell transplantation for refractory juvenile idiopathic arthritis: analysis of clinical effects, mortality, and transplant related morbidity.  Ann Rheum Dis. 2004;63(10):1318-1326
PubMed   |  Link to Article
Farge D, Passweg J, van Laar JM,  et al.  Autologous stem cell transplantation in the treatment of systemic sclerosis: report from the EBMT/EULAR registry.  Ann Rheum Dis. 2004;63(8):974-981
PubMed   |  Link to Article
Jayne D, Passweg J, Marmont A,  et al; European Group for Blood and Marrow Transplantation, European League Against Rheumatism Registry.  Autologous stem cell transplantation for systemic lupus erythematosus.  Lupus. 2004;13(3):168-176
PubMed   |  Link to Article
Binks M, Passweg JR, Furst D,  et al.  Phase I/II trial of autologous stem cell transplantation in systemic sclerosis: procedure related mortality and impact on skin disease.  Ann Rheum Dis. 2001;60(6):577-584
PubMed   |  Link to Article
Montoto S, Canals C, Rohatiner AZ,  et al; EBMT Lymphoma Working Party.  Long-term follow-up of high-dose treatment with autologous haematopoietic progenitor cell support in 693 patients with follicular lymphoma: an EBMT registry study [published online ahead of print July 19, 2007].  Leukemia. 2007;21(11):2324-2331
PubMed  |  Link to Article   |  Link to Article
Brown JR, Feng Y, Gribben JG,  et al.  Long-term survival after autologous bone marrow transplantation for follicular lymphoma in first remission.  Biol Blood Marrow Transplant. 2007;13(9):1057-1065
PubMed   |  Link to Article
Loh Y, Oyama Y, Statkute L,  et al.  Development of a secondary autoimmune disorder after hematopoietic stem cell transplantation for autoimmune diseases: role of conditioning regimen used.  Blood. 2007;109(6):2643-2648
PubMed   |  Link to Article
Rocca MA, Mondria T, Valsasina P,  et al.  A three-year study of brain atrophy after autologous hematopoietic stem cell transplantation in rapidly evolving secondary progressive multiple sclerosis.  AJNR Am J Neuroradiol. 2007;28(9):1659-1661
PubMed   |  Link to Article
Verburg RJ, Flierman R, Sont JK,  et al.  Outcome of intensive immunosuppression and autologous stem cell transplantation in patients with severe rheumatoid arthritis is associated with the composition of synovial T cell infiltration.  Ann Rheum Dis. 2005;64(10):1397-1405
PubMed   |  Link to Article
Teng YK, Verburg RJ, Sont JK, van den Hout WB, Breedveld FC, van Laar JM. Long-term followup of health status in patients with severe rheumatoid arthritis after high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation.  Arthritis Rheum. 2005;52(8):2272-2276
PubMed   |  Link to Article
Oyama Y, Sufit R, Loh Y,  et al.  Autologous nonmyeloablative hematopoietic stem cell transplantation for refractory CIDP.  Neurology. 2007;69(18):1802-1803
PubMed   |  Link to Article
Rosen O, Thiel A, Massenkeil G,  et al.  Autologous stem-cell transplantation in refractory autoimmune diseases after in vivo immunoablation and ex vivo depletion of mononuclear cells.  Arthritis Res. 2000;2(4):327-336
PubMed   |  Link to Article
Oryoji K, Himeji D, Nagafuji K,  et al.  Successful treatment of rapidly progressive interstitial pneumonia with autologous peripheral blood stem cell transplantation in a patient with dermatomyositis.  Clin Rheumatol. 2005;24(6):637-640
PubMed   |  Link to Article
Voltarelli JC, Oliveira MC, Stracieri AB,  et al.  Haematopoietic stem cell transplantation for refractory Takayasu's arteritis.  Rheumatology (Oxford). 2004;43(10):1308-1309
PubMed   |  Link to Article
Burt RK, Oyama Y, Verda L,  et al.  Induction of remission of severe and refractory rheumatoid arthritis by allogeneic mixed chimerism.  Arthritis Rheum. 2004;50(8):2466-2470
PubMed   |  Link to Article
Loh Y, Oyama Y, Statkute L,  et al.  Non-myeloablative allogeneic hematopoietic stem cell transplantation for severe systemic sclerosis: graft-versus-autoimmunity without graft-versus-host disease? [published online ahead of print February 19, 2007].  Bone Marrow Transplant. 2007;39(7):435-437
PubMed  |  Link to Article   |  Link to Article
Nash RA, McSweeney PA, Nelson JL,  et al.  Allogeneic marrow transplantation in patients with severe systemic sclerosis: resolution of dermal fibrosis.  Arthritis Rheum. 2006;54(6):1982-1986
PubMed   |  Link to Article
Marmont AM, Gualandi F, Piaggio G,  et al.  Allogeneic bone marrow transplantation (BMT) for refractory Behcet's disease with severe CNS involvement.  Bone Marrow Transplant. 2006;37(11):1061-1063
PubMed   |  Link to Article
Marmont AM, Gualandi F, Van Lint MT, Bacigalupo A. Refractory Evans' syndrome treated with allogeneic SCT followed by DLI: demonstration of a graft-versus-autoimmunity effect.  Bone Marrow Transplant. 2003;31(5):399-402
PubMed   |  Link to Article
Verda L, An Kim D, Ikehara S,  et al.  Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in nod mice [published online ahead of print November 1, 2007].  Stem Cells. 2008;26(2):381-386
PubMed   |  Link to Article
Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression?  Trends Immunol. 2007;28(5):219-226
PubMed   |  Link to Article
Ringdén O, Uzunel M, Rasmusson I,  et al.  Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease.  Transplantation. 2006;81(10):1390-1397
PubMed   |  Link to Article
Fang B, Song YP, Liao LM, Han Q, Zhao RC. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells.  Bone Marrow Transplant. 2006;38(5):389-390
PubMed   |  Link to Article
Schächinger V, Assmus B, Britten MB,  et al.  Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial.  J Am Coll Cardiol. 2004;44(8):1690-1699
PubMed   |  Link to Article
Schächinger V, Erbs S, Elsasser A,  et al.  Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.  N Engl J Med. 2006;355(12):1210-1221
PubMed   |  Link to Article
Schächinger V, Erbs S, Elsässer A,  et al;  REPAIR-AMI Investigators.  Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial.  Eur Heart J. 2006;27(3):2775-2783
PubMed   |  Link to Article
Wollert KC, Meyer GP, Lotz J,  et al.  Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.  Lancet. 2004;364(9429):141-148
PubMed   |  Link to Article
Meyer GP, Wollert KC, Lotz J,  et al.  Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.  Circulation. 2006;113(10):1287-1294
PubMed   |  Link to Article
Schaefer A, Meyer GP, Fuchs M,  et al.  Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial.  Eur Heart J. 2006;27(8):929-935
PubMed   |  Link to Article
Lunde K, Solheim S, Aakhus S,  et al.  Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.  N Engl J Med. 2006;355(12):1199-1209
PubMed   |  Link to Article
Kang HJ, Kim HS, Koo BK,  et al.  Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial.  Am Heart J. 2007;153(2):237.e1-8
PubMed   |  Link to Article
Kang HJ, Lee HY, Na SH,  et al.  Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial.  Circulation. 2006;114(1):(suppl)  I145-I151
PubMed
Chen SL, Fang WW, Ye F,  et al.  Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.  Am J Cardiol. 2004;94(1):92-95
PubMed   |  Link to Article
Janssens S, Dubois C, Bogaert J,  et al.  Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.  Lancet. 2006;367(9505):113-121
PubMed   |  Link to Article
Bartunek J, Vanderheyden M, Vandekerckhove B,  et al.  Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety.  Circulation. 2005;112(9):(suppl)  I178-I183
PubMed
Mansour S, Vanderheyden M, De Bruyne B,  et al.  Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction.  J Am Coll Cardiol. 2006;47(8):1727-1730
PubMed   |  Link to Article
Li ZQ, Zhang M, Jing YZ,  et al.  The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI).  Int J Cardiol. 2007;115(1):52-56
PubMed   |  Link to Article
Meluzin J, Mayer J, Groch L,  et al.  Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function.  Am Heart J. 2006;152(5):975.e9-15
PubMed   |  Link to Article
Tatsumi T, Ashihara E, Yasui T,  et al.  Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction.  Circ J. 2007;71(8):1199-1207
PubMed   |  Link to Article
Choi JH, Choi J, Lee WS,  et al.  Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction.  Circ J. 2007;71(4):486-494
PubMed   |  Link to Article
Assmus B, Schachinger V, Teupe C,  et al.  Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI).  Circulation. 2002;106(24):3009-3017
PubMed   |  Link to Article
Britten MB, Abolmaali ND, Assmus B,  et al.  Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging.  Circulation. 2003;108(18):2212-2218
PubMed   |  Link to Article
Döbert N, Britten M, Assmus B,  et al.  Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT.  Eur J Nucl Med Mol Imaging. 2004;31(8):1146-1151
PubMed   |  Link to Article
Schächinger V, Assmus B, Honold J,  et al.  Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial.  Clin Res Cardiol. 2006;95(1):13-22
PubMed   |  Link to Article
Erbs S, Linke A, Schächinger V,  et al.  Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial.  Circulation. 2007;116(4):366-374
PubMed   |  Link to Article
Kang HJ, Kim HS, Zhang SY,  et al.  Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial.  Lancet. 2004;363(9411):751-756
PubMed   |  Link to Article
Grothues F, Smith GC, Moon JC,  et al.  Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy.  Am J Cardiol. 2002;90(1):29-34
PubMed   |  Link to Article
Abdel-Latif A, Bolli R, Tleyjeh IM,  et al.  Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis.  Arch Intern Med. 2007;167(10):989-997
PubMed   |  Link to Article
Lipinski MJ, Biondi-Zoccai GG, Abbate A,  et al.  Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials.  J Am Coll Cardiol. 2007;50(18):1761-1767
PubMed   |  Link to Article
Hristov M, Heussen N, Schober A, Weber C. Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis.  J Cell Mol Med. 2006;10(3):727-733
PubMed   |  Link to Article
Erbs S, Linke A, Adams V,  et al.  Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study.  Circ Res. 2005;97(8):756-762
PubMed   |  Link to Article
Strauer BE, Brehm M, Zeus T,  et al.  Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study.  J Am Coll Cardiol. 2005;46(9):1651-1658
PubMed   |  Link to Article
Assmus B, Honold J, Schachinger V,  et al.  Transcoronary transplantation of progenitor cells after myocardial infarction.  N Engl J Med. 2006;355(12):1222-1232
PubMed   |  Link to Article
Assmus B, Fischer-Rasokat U, Honold J,  et al; TOPCARE-CHD Registry.  Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry.  Circ Res. 2007;100(8):1234-1241
PubMed   |  Link to Article
Perin EC, Dohmann HF, Borojevic R,  et al.  Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy.  Circulation. 2004;110(11):(suppl 1)  II213-II218
PubMed   |  Link to Article
Perin EC, Dohmann HF, Borojevic R,  et al.  Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure.  Circulation. 2003;107(18):2294-2302
PubMed   |  Link to Article
Patel AN, Geffner L, Vina RF,  et al.  Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study.  J Thorac Cardiovasc Surg. 2005;130(6):1631-1638
PubMed   |  Link to Article
Hendrikx M, Hensen K, Clijsters C,  et al.  Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial.  Circulation. 2006;114(1):(suppl)  I101-I107
PubMed   |  Link to Article
Fuchs S, Kornowski R, Weisz G,  et al.  Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease.  Am J Cardiol. 2006;97(6):823-829
PubMed   |  Link to Article
Beeres SL, Bax JJ, Dibbets-Schneider P,  et al.  Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results.  Am Heart J. 2006;152(4):684.e11-6
PubMed   |  Link to Article
Gao LR, Wang ZG, Zhu ZM,  et al.  Effect of intracoronary transplantation of autologous bone marrow-derived mononuclear cells on outcomes of patients with refractory chronic heart failure secondary to ischemic cardiomyopathy.  Am J Cardiol. 2006;98(5):597-602
PubMed   |  Link to Article
Chen S, Liu Z, Tian N,  et al.  Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery.  J Invasive Cardiol. 2006;18(11):552-556
PubMed
Manginas A, Goussetis E, Koutelou M,  et al.  Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(-) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction.  Catheter Cardiovasc Interv. 2007;69(6):773-781
PubMed   |  Link to Article
Losordo DW, Schatz RA, White CJ,  et al.  Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial.  Circulation. 2007;115(25):3165-3172
PubMed   |  Link to Article
Mocini D, Staibano M, Mele L,  et al.  Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting.  Am Heart J. 2006;151(1):192-197
PubMed   |  Link to Article
Stamm C, Kleine HD, Choi YH,  et al.  Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies.  J Thorac Cardiovasc Surg. 2007;133(3):717-725
PubMed   |  Link to Article
Miyamoto K, Nishigami K, Nagaya N,  et al.  Unblinded pilot study of autologous transplantation of bone marrow mononuclear cells in patients with thromboangiitis obliterans.  Circulation. 2006;114(24):2679-2684
PubMed   |  Link to Article
Lenk K, Adams V, Lurz P,  et al.  Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia.  Eur Heart J. 2005;26(18):1903-1909
PubMed   |  Link to Article
Bartsch T, Brehm M, Zeus T, Kögler G, Wernet P, Strauer BE. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study).  Clin Res Cardiol. 2007;96(12):891-899
PubMed   |  Link to Article
Kim DI, Kim MJ, Joh JH,  et al.  Angiogenesis facilitated by autologous whole bone marrow stem cell transplantation for Buerger's disease.  Stem Cells. 2006;24(5):1194-1200
PubMed   |  Link to Article
Durdu S, Akar AR, Arat M, Sancak T, Eren NT, Ozyurda U. Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II-III thromboangiitis obliterans.  J Vasc Surg. 2006;44(4):732-739
PubMed   |  Link to Article
Kawamura A, Horie T, Tsuda I,  et al.  Prevention of limb amputation in patients with limbs ulcers by autologous peripheral blood mononuclear cell implantation.  Ther Apher Dial. 2005;9(1):59-63
PubMed   |  Link to Article
Tateishi-Yuyama E, Matsubara H, Murohara T,  et al.  Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial.  Lancet. 2002;360(9331):427-435
PubMed   |  Link to Article
Saigawa T, Kato K, Ozawa T,  et al.  Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells.  Circ J. 2004;68(12):1189-1193
PubMed   |  Link to Article
Ishida A, Ohya Y, Sakuda H,  et al.  Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia.  Circ J. 2005;69(10):1260-1265
PubMed   |  Link to Article
Terai S, Ishikawa T, Omori K,  et al.  Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy.  Stem Cells. 2006;24(10):2292-2298
PubMed   |  Link to Article
Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M,  et al.  Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis.  Arch Iran Med. 2007;10(4):459-466
PubMed
am Esch JS II, Knoefel WT, Klein M,  et al.  Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration.  Stem Cells. 2005;23(4):463-470
PubMed   |  Link to Article
CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 168

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
Stem cell therapies for systemic sclerosis. Br J Haematol Published online Nov 5, 2014.;