0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Research Letters |

Mortality in Adults With Sickle Cell Disease and Pulmonary Hypertension FREE

Alem Mehari, MD; Mark T. Gladwin, MD; Xin Tian, PhD; Roberto F. Machado, MD; Gregory J. Kato, MD
[+] Author Affiliations

Author Affiliations: College of Medicine, Howard University, Washington, DC (Dr Mehari); Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Gladwin); National Heart, Lung, and Blood Institute, Bethesda, Maryland (Drs Tian and Kato) (gkato@mail.nih.gov); and Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois, Chicago (Dr Machado).


JAMA. 2012;307(12):1254-1256. doi:10.1001/jama.2012.358.
Text Size: A A A
Published online

To the Editor: Noninvasive echocardiographic markers of elevated pulmonary artery pressure have been associated with early mortality in some studies in adults with sickle cell disease (SCD),1,2 but considerable controversy remains regarding the prevalence of pulmonary hypertension and its contribution to mortality.3 We assessed prevalence and survival in a cohort of patients with SCD with pulmonary hypertension documented by right heart catheterization (RHC).

Patients provided written informed consent to protocols approved by the institutional review board at the National Institutes of Health. All adults with stable SCD seen consecutively in the outpatient clinic at the National Institutes of Health were screened with no exclusion criterion applied. Those who underwent RHC between March 13, 2002, and June 8, 2010, with elevated tricuspid regurgitant velocity (TRV) on echocardiography (≥2.8 m/s) and clinical suspicion of pulmonary hypertension (6-minute walk distance <500 m, unexplained dyspnea or desaturation, or both) were included. Pulmonary hypertension was defined as a mean pulmonary artery pressure of 25 mm Hg or greater. Life status was ascertained from clinical records, the Social Security Death Index, state death certificates, and contact with the patient or family as of June 8, 2010. All causes of death were considered for survival analysis. Survival rates (estimated by the Kaplan-Meier method) were compared between (1) those with pulmonary hypertension documented by RHC, (2) those without pulmonary hypertension documented by RHC, and (3) those who did not undergo RHC. Hazard ratios (HRs) were calculated based on Cox proportional hazards regression. Statistical tests were 2-sided and performed using the statistical language R version 2.13.1. P < .05 was considered statistically significant.

Of 531 patients screened by echocardiography, 84 (15.8%) underwent RHC. Right heart catheterization was performed in 81 of 243 patients with a TRV of 2.5 m/s or greater, 67 of 128 with a TRV of 2.8 m/s or greater, 58 of 88 with a TRV of 3 m/s or greater, and 56 of 63 with both a TRV of 2.8 m/s or greater and a 6-minute walk distance of less than 500 m. Fifty-five patients had pulmonary hypertension (65.5% of those who underwent RHC and 10.4% of the total population) and 29 did not. Patients with pulmonary hypertension were older than those who did not undergo RHC and had lower levels of hematocrit and higher serum levels of lactate dehydrogenase, aspartate aminotransferase, direct bilirubin, and ferritin (Table). Patients with pulmonary hypertension demonstrated significantly abnormal cardiopulmonary markers and exercise capacity.

Table Graphic Jump LocationTable. Clinical Characteristics of Patients With Sickle Cell Disease by Pulmonary Hypertension Status

The median follow-up time since enrollment was 4.4 years, with a maximum of 9.6 years. A total of 73 deaths were observed. The overall mortality was worse in the pulmonary hypertension group (20 deaths, 6-year mortality of 37% [95% CI, 20%-50%]) than in either the group without pulmonary hypertension (3 deaths, 6-year mortality of 13% [95% CI, 0%-26%]; age-adjusted HR, 3.43 [95% CI, 1.02-11.55]; P = .047) or the group without RHC (50 deaths, 6-year mortality of 17% [95% CI, 12%-21%]; age-adjusted HR, 2.14 [95% CI, 1.25-3.67]; P = .006) (Figure, part A). Estimated median survival time was 6.8 years after ascertainment of pulmonary hypertension. Patients with SCD and pulmonary hypertension also died at a younger age than the group without RHC (Figure, part B).

Place holder to copy figure label and caption
Figure. Kaplan-Meier Estimates of Survival for Patients With Sickle Cell Disease by Pulmonary Hypertension Status
Graphic Jump Location

A, The age-adjusted hazard ratio (HR) was 3.43 (95% CI, 1.02-11.55; P = .047) for the comparison between patients with pulmonary hypertension documented by right heart catheterization (RHC) and those who did not have pulmonary hypertension documented by RHC; 2.14 (95% CI, 1.25-3.67; P = .006) for patients with pulmonary hypertension vs those who did not undergo RHC (uncatheterized); and 0.62 (95% CI, 0.19-2.03; P = .43) for patients without pulmonary hypertension vs those who did not undergo RHC (uncatheterized). B, The HR was 3.35 (95% CI, 1.01-11.31; P = .04) for the comparison between patients with pulmonary hypertension documented by RHC and those who did not have pulmonary hypertension documented by RHC; 1.73 (95% CI, 1.02-2.93; P = .04) for patients with pulmonary hypertension vs those who did not undergo RHC (uncatheterized); and 0.49 (95% CI, 0.15-1.59; P = .23) for patients without pulmonary hypertension vs those who did not undergo RHC (uncatheterized).

This is, to our knowledge, the largest cohort of adults with SCD and pulmonary hypertension detected using RHC consensus diagnostic criteria, and for the first time, an association has been shown between mortality and mean pulmonary artery pressure documented by RHC. This finding suggests a role for pulmonary hypertension in SCD mortality, previously suspected from noninvasive echocardiographic screening studies.1,2 Our pulmonary hypertension prevalence is similar to 1 recent study4 but higher than another,5 which may relate to differences in study exclusion criteria and population characteristics. This was a retrospective, observational study with inherent limitations. Approximately 1.3% of patients screened had indications for catheterization but did not undergo RHC, projecting to an estimate of 5 missed cases of pulmonary hypertension in the group without RHC. Our results therefore represent a conservative estimate of the prevalence and mortality of pulmonary hypertension in SCD.

Pulmonary hypertension mortality in SCD is high, and effective treatment approaches targeting this population are needed.

Author Contributions: Dr Kato had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Mehari and Gladwin contributed equally. Drs Machado and Kato (senior authors) contributed equally.

Study concept and design: Gladwin, Machado, Kato.

Acquisition of data: Mehari, Gladwin, Machado, Kato.

Analysis and interpretation of data: Mehari, Gladwin, Tian, Machado, Kato.

Drafting of the manuscript: Mehari, Gladwin, Tian, Machado, Kato.

Critical revision of the manuscript for important intellectual content: Mehari, Gladwin, Tian, Machado, Kato.

Statistical analysis: Mehari, Tian.

Obtained funding: Kato.

Administrative, technical or material support: Gladwin.

Study supervision: Machado, Kato.

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Gladwin reported that grant money was paid to his institution by Bayer Corporation and INO Therapeutics and money was paid by the US government to his institution for patents in which he is the co-inventor and coauthor. No other author reported disclosures.

Funding/Support: This research was supported by grants 1ZIAHL006011, 1ZIAHL006015, and 1ZIAHL006012 from the Division of Intramural Research of the National Heart, Lung, and Blood Institute of the National Institutes of Health. Dr Gladwin receives research support from the Institute for Transfusion Medicine and the Hemophilia Center of Western Pennsylvania and from National Institutes of Health grants R01HL098032, RO1HL096973, RC1DK085852, and PO1HL103455. Dr Machado receives research support from National Institutes of Health grant K23HL098454.

Role of the Sponsors: The funding organizations had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript.

Additional Contributions: The following 9 collaborators are acknowledged for their contributions to this study: Shoaib Alam, MD, James G. Taylor VI, MD, Vandana Sachdev, MD, Caterina P. Minniti, MD, and Catherine Seamon, RN (acquisition of data and critical revision of the manuscript for important intellectual content), Dihua Xu, PhD (data analysis), all with the National Heart, Lung, and Blood Institute, Bethesda, Maryland; Michael J. Cuttica, MD (acquisition of data and critical revision of the manuscript for important intellectual content), Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Christopher F. Barnett, MD (acquisition of data and critical revision of the manuscript for important intellectual content), Division of Cardiology, University of California, San Francisco; and Patricia Adams-Graves, MD (acquisition of data and critical revision of the manuscript for important intellectual content). We thank additional National Institutes of Health personnel, including Mary K. Hall, CIP, for expert protocol management; and additional Protocol Coordinators James Nichols, RN, Wynona Coles, RT, and Lori Hunter, RN. None of these personnel received outside compensation for this study. This research could not have been possible without all the patients with sickle cell disease who participated.

Gladwin MT, Sachdev V, Jison ML,  et al.  Pulmonary hypertension as a risk factor for death in patients with sickle cell disease.  N Engl J Med. 2004;350(9):886-895
PubMed   |  Link to Article
Ataga KI, Moore CG, Jones S,  et al.  Pulmonary hypertension in patients with sickle cell disease: a longitudinal study.  Br J Haematol. 2006;134(1):109-115
PubMed   |  Link to Article
Bunn HF, Nathan DG, Dover GJ,  et al.  Pulmonary hypertension and nitric oxide depletion in sickle cell disease.  Blood. 2010;116(5):687-692
PubMed   |  Link to Article
Parent F, Bachir D, Inamo J,  et al.  A hemodynamic study of pulmonary hypertension in sickle cell disease.  N Engl J Med. 2011;365(1):44-53
PubMed   |  Link to Article
Fonseca GH, Souza R, Salemi VM, Jardim CV, Gualandro SF. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease.  Eur Respir J . 2012;39(1):112-118
PubMed   |  Link to Article

Figures

Place holder to copy figure label and caption
Figure. Kaplan-Meier Estimates of Survival for Patients With Sickle Cell Disease by Pulmonary Hypertension Status
Graphic Jump Location

A, The age-adjusted hazard ratio (HR) was 3.43 (95% CI, 1.02-11.55; P = .047) for the comparison between patients with pulmonary hypertension documented by right heart catheterization (RHC) and those who did not have pulmonary hypertension documented by RHC; 2.14 (95% CI, 1.25-3.67; P = .006) for patients with pulmonary hypertension vs those who did not undergo RHC (uncatheterized); and 0.62 (95% CI, 0.19-2.03; P = .43) for patients without pulmonary hypertension vs those who did not undergo RHC (uncatheterized). B, The HR was 3.35 (95% CI, 1.01-11.31; P = .04) for the comparison between patients with pulmonary hypertension documented by RHC and those who did not have pulmonary hypertension documented by RHC; 1.73 (95% CI, 1.02-2.93; P = .04) for patients with pulmonary hypertension vs those who did not undergo RHC (uncatheterized); and 0.49 (95% CI, 0.15-1.59; P = .23) for patients without pulmonary hypertension vs those who did not undergo RHC (uncatheterized).

Tables

Table Graphic Jump LocationTable. Clinical Characteristics of Patients With Sickle Cell Disease by Pulmonary Hypertension Status

References

Gladwin MT, Sachdev V, Jison ML,  et al.  Pulmonary hypertension as a risk factor for death in patients with sickle cell disease.  N Engl J Med. 2004;350(9):886-895
PubMed   |  Link to Article
Ataga KI, Moore CG, Jones S,  et al.  Pulmonary hypertension in patients with sickle cell disease: a longitudinal study.  Br J Haematol. 2006;134(1):109-115
PubMed   |  Link to Article
Bunn HF, Nathan DG, Dover GJ,  et al.  Pulmonary hypertension and nitric oxide depletion in sickle cell disease.  Blood. 2010;116(5):687-692
PubMed   |  Link to Article
Parent F, Bachir D, Inamo J,  et al.  A hemodynamic study of pulmonary hypertension in sickle cell disease.  N Engl J Med. 2011;365(1):44-53
PubMed   |  Link to Article
Fonseca GH, Souza R, Salemi VM, Jardim CV, Gualandro SF. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease.  Eur Respir J . 2012;39(1):112-118
PubMed   |  Link to Article
CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles