0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Preliminary Communication |

Relationship of Collegiate Football Experience and Concussion With Hippocampal Volume and Cognitive Outcomes

Rashmi Singh, PhD1; Timothy B. Meier, PhD1; Rayus Kuplicki, MS1,2; Jonathan Savitz, PhD1,3; Ikuko Mukai, PhD1; LaMont Cavanagh, MD4; Thomas Allen, DO, MPH4; T. Kent Teague, PhD5,6,7; Christopher Nerio, MS8; David Polanski, MS8; Patrick S. F. Bellgowan, PhD1,3
[+] Author Affiliations
1Laureate Institute for Brain Research, Tulsa, Oklahoma
2Tandy School of Computer Science, The University of Tulsa, Tulsa, Oklahoma
3Faculty of Community Medicine, The University of Tulsa, Tulsa, Oklahoma
4Department of Family Medicine, The University of Oklahoma School of Community Medicine, Tulsa
5Departments of Surgery and Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa
6Department of Pharmaceutical Sciences, The University Oklahoma College of Pharmacy, Tulsa
7Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa
8Department of Athletics, The University of Tulsa, Tulsa, Oklahoma
JAMA. 2014;311(18):1883-1888. doi:10.1001/jama.2014.3313.
Text Size: A A A
Published online

Importance  Concussion and subconcussive impacts have been associated with short-term disrupted cognitive performance in collegiate athletes, but there are limited data on their long-term neuroanatomic and cognitive consequences.

Objective  To assess the relationships of concussion history and years of football experience with hippocampal volume and cognitive performance in collegiate football athletes.

Design, Setting, and Participants  Cross-sectional study conducted between June 2011 and August 2013 at a US psychiatric research institute specializing in neuroimaging among collegiate football players with a history of clinician-diagnosed concussion (n = 25), collegiate football players without a history of concussion (n = 25), and non–football-playing, age-, sex-, and education-matched healthy controls (n = 25).

Exposures  History of clinician-diagnosed concussion and years of football experience.

Main Outcomes and Measures  High-resolution anatomical magnetic resonance imaging was used to quantify brain volumes. Baseline scores on a computerized concussion-related cognitive battery were used for cognitive assessment in athletes.

Results  Players with and without a history of concussion had smaller hippocampal volumes relative to healthy control participants (with concussion: t48 = 7.58; P < .001; mean difference, 1788 μL; 95% CI, 1317-2258 μL; without concussion: t48 = 4.35; P < .001, mean difference, 1027 μL; 95% CI, 556-1498 μL). Players with a history of concussion had smaller hippocampal volumes than players without concussion (t48 = 3.15; P < .001; mean difference, 761 μL; 95% CI, 280-1242 μL). In both athlete groups, there was a statistically significant inverse relationship between left hippocampal volume and number of years of football played (t46 = −3.62; P < .001; coefficient = −43.54; 95% CI, −67.66 to −19.41). Behavioral testing demonstrated no differences between athletes with and without a concussion history on 5 cognitive measures but did show an inverse correlation between years of playing football and reaction time (ρ42 = −0.43; 95% CI, −0.46 to −0.40; P = .005).

Conclusions and Relevance  Among a group of collegiate football athletes, there was a significant inverse relationship of concussion and years of football played with hippocampal volume. Years of football experience also correlated with slower reaction time. Further research is needed to determine the temporal relationships of these findings.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Figures

Place holder to copy figure label and caption
Figure 1.
Smaller Hippocampal Volumes in Collegiate Football Athletes Relative to Healthy Controls

Total, left hemisphere, and right hemisphere hippocampal volumes for healthy controls (n=25), athletes with no history of concussion (n=25), and athletes with a history of concussion (n=25). Shown in each box plot are the 5th and 95th percentiles (black dots), 10th and 90th percentiles (whiskers), and 25th and 75th percentiles (box top and bottom). The median (solid line) and mean (dotted line) are also shown within each group’s box. Individual volumes for each group are indicated by the symbols to the left of each group’s box plot.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Years of Football Experience Inversely Correlate With Baseline Reaction Time and Left Hemisphere Hippocampal Volume

Left, total number of years that athletes reported having played football (x-axis) in relation to the Immediate Post-Concussion Assessment and Cognitive Testing composite reaction time score. Forty-four collegiate football players contributed data (n=22 athletes without and n=22 athletes with concussion); the regression line (blue diagonal line) is calculated for all points regardless of concussion history. Right, relationship between years played and left hemisphere hippocampal volume. Forty-eight athletes contributed data for this plot (n=24 athletes without and n=24 athletes with concussion); the regression line (blue diagonal line) is calculated for all points regardless of concussion history. In both graphs, some data markers overlap.

Graphic Jump Location

Tables

References

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
Jobs
brightcove.createExperiences();